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Light-Matter interaction

photons (Energy ~ω, wave vector q) get absorbed or scattered in
matter by electrons, in quantum states ψn
– scattering off nuclei (→ phonons) is weak and not considered here

(ωq, ψg)→ (−, ψf ) light absorption
(ωq, ψg)→ (ωq′, ψg) elastic (Bragg) scattering: momentum
transfer to lattice → structural probe (XRD)
(ωq, ψg)→ (ω′q′, ψf ) inelastic scattering: momentum and energy
transfer to electrons → probes electronic excitations
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Light-Matter interaction

Absorption: (ωq, ψn)→ (−, ψm) light absorption

if Ef > Evac then possible photoelectron emission
Measure energy, angle, spin distribution
→ most direct information about electronic states

P. Krüger (CU) Spectroscopy October 2018 4 / 72



Light-Matter interaction

H = He +Hp +Hint

Here: classical treatment of light
(quantized photon field: see J.J.Sakurai, Adv. Quantum Mechanics)

electron momentum p −→ p− eA/c

Hint = − e

2mc
(p ·A + A · p) +

e2

2mc2
A2

A vector potential. E = −1
c∂A/∂t, B = ∇×A

Electromagnetic wave A(r, t) = A0 exp(iq · r− iωt)
Coulomb gauge ∇ ·A = 0 → p ·A−A · p = −i~∇ ·A = 0

Gauge freedom ? −→ Christian Brouder’s lecture

A · p → absorption/stimulated emission

A2 non-resonant scattering
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Perturbation theory

light-electron interaction is a weak coupling α = e2/~c = 1/137 ⇒
Perturbation theory in Hint.

except for laser, light intensity/number of photons is small ⇒
lowest order terms often sufficient

transition rate for oscilating perturbation Hint(t) = V exp(−iωt)

wfg ≡
d

dt
Pf←g =

2π

~
|〈f |T |g〉|2δ(Ef − Eg − ~ω)

〈f |T |g〉 = 〈f |V |g〉+
∑
m

〈f |V +|m〉〈m|V |g〉
~ω + Eg − Em + iΓm/2

+ . . .

1st order: Fermi’s golden rule. 2nd order: Kramers-Heisenberg.
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Transition amplitudes

Vo = e
mcA · p 1-photon-electron interaction

1st order → photon absorption (+emission) 〈f |T |g〉 ∼ 〈f |A · p|g〉
2nd order →

〈f |T |g〉 =
∑
m

〈f |V +
o |m〉〈m|Vo|g〉

~ω + Eg − Em + iΓm/2

→ resonant scattering (inelastic: resonant Raman scattering)

V = Vo + VAI autoionization operator: electron-electron scattering
with continuum states 〈 c,k|1/r| p,q 〉

〈f |T |g〉 =
∑
m

〈f |VAI |m〉〈m|Vo|g〉
~ω + Eg − Em + iΓm/2

→ resonant Auger electron emission
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Electronic structure theory

One-electron system, e.g. hydrogen atom. Hψ = εψ.

Bound states ψnlm(r)χs(σ) εnlms = −13.6 eV

n2

Scattering states ψεlm(r)χs(σ) ε > 0 (any)

The wave functions ψ(r) and all excitation energies are known exactly.

Atoms ( 6=H), molecules, solides: Ne > 1 electrons ⇒ trouble

H =
∑
i

(
− ~2

2m
∇2
i + Vnucl(ri)

)
+
∑
i<j

e2

|ri − rj |

HΨ = EΨ , Ψ(r1σ1, r2σ2, . . . rNσN )

This electronic many-body problem cannot be solved exactly.
Strong approximations are needed.
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Electronic structure theory

Most popular approaches for electron spectroscopy:

1 Hartree-Fock approximation

2 “Post-HF”, configuration interaction

3 Density functional theory

4 Time-dependent DFT
5 Quasi-particle Green’s function methods

GW approximation (semiconductors)
Dynamical mean field theory (strongly correlated systems)

6 Bethe-Salpeter equation
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Pauli principle, Slater deterimants

Simplest many-electron wave function: product of one-electron states
(spin-orbitals). Why?

If H(x1, x2) = Ha(x1) +Hb(x2) then Ψ(x1, x2) = ψa(x1)ψb(x2)

But electrons are indistinguishable → Pauli-principle
Ψ antisymmetric under exchange Ψ(x1, x2) = −Ψ(x2, x1)
Antisymmetrized product →

Ψ(x1, x2) = [ψa(x1)ψb(x2)− ψa(x2)ψb(x1)]/
√

2

N electrons → Slater-determinant

Ψ =
1√
N !

∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xN )
φ2(x1) φ2(x2) . . . φ2(xN )
. . . . . . . . . . . .

φN (x1) φN (x2) . . . φN (xN )

∣∣∣∣∣∣∣∣
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Hartree-Fock approximation

Assume ground state is Slater Determinant. HFA gives “best” orbitals.

H =
∑
i

[
1

2
∇2
i + Vext(ri)

]
+
∑
i<j

1

|ri − rj |

“Rayleigh-Ritz” variational principle

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

,
δE[Ψ]

δΨ
= 0

Assuming Ψ=Slater Deteterminant results in Hartree-Fock equations[
−1

2
∇2 + Vext(r) + VH(r) + V̂X

]
φn(r) = εnφ(r)

The ground state wave function is the Slater-determinant made of the
n = Ne/2 orbitals of lowest energy. ΨHF = |φ1 . . . φn|.
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Hartree-Fock equations

[
−1

2
∇2 + Vext(r) + VH(r) + V̂X

]
φn(r) = εn(r)

In HF approximation, the dynamical electron-electron interaction is
replaced by a static mean (“effective”) field potential VH + VX .

VH(r) =
occ∑
m

∫
dr′
|φm(r′)|2

|r− r′|
=

∫
dr′

ρ(r′)

|r− r′|

VH “Hartree potential”= classical electrostatic potential of electronic
charge density. Repulsive

V̂X φn(r) = −
same spin∑

m

∫
dr′

φ∗m(r′)φm(r)φn(r′)

|r− r′|

VX “Exchange potential”. No classical analogue. Due to antisymmetry
of Ψ. Non-local. Attractive.
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Configuration Interaction

The HF (or “SCF=self-consistent field”) method, is the standard
in quantum chemistry / molecular orbital theory. It has been
extremely successful for molecules.

Difference between exact theory and HFA is called “correlation”.

The most straightforward method to include correlation effects is
Configuration Interaction (C.I.)

C.I. wave functions are linear combinations of Slater Determinants,
including HF ground state and particle-hole excitations.
How?
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Configuration Interaction

compute HF orbitals 1, 2, . . . n, n+ 1 . . . (n = Ne/2)

build S.D. basis: not only the HF-GS |1 2 . . . n|, but also
particle-hole excitations |1 . . . h1 . . . h2 . . . n p1 p2|
diagonalize hamiltonian in the space of these SD

→ “correlated” wave functions = linear combination of S.D.
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Configuration Interaction

is very precise

computational cost scales exponentially with number of electrons.
⇒ full C.I. only possible for about 10 electrons (CH4).

restricted CI: e.g. only single + double particle-hole excitations

“CAS-SCF” complete active space self-consistent field

select the “active space” = small set of molecular orbitals (around
HOMO-LUMO) that you think are relevant for correlation
do CI calculation with all particle-hole excitations in active space
case of transition metal complexes:
active space = MO’s with dominant metal-d character.
implemented for L-edge XAS by Ogazawara, Ikeno et al.
→ “ab initio ligand field multiplet” method

P. Krüger (CU) Spectroscopy October 2018 15 / 72



Complete active space self-consistent field CAS-SCF

select an “active space” = small set of molecular orbitals (around
HOMO-LUMO) that you think are relevant for correlation
do CI calculation with all particle-hole excitations in active space
case of transition metal complexes:
active space = MO’s with dominant metal-d character.
implemented for L-edge XAS by Ogazawara, Ikeno et al.
→ “ab initio ligand field multiplet” method
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Density Functional Theory (DFT)

Hartree-Fock is difficult for solids and performs poorly for metals

1964: DFT becomes a new paradigm for electronic structure theory

Idea: use electron density n(r) as basic object of the theory rather
than the many-electron wave functions Ψn(r1, . . . rN ).

Hohenberg-Kohn theorems on interacting, inhomogenous electron gas:

1 Ground state electron density n0(r) uniquely determines external
potential Vext(r) (and thus H and thus in principle Ψn)

2 The total energy is a unique functional of the density. The exact
ground state density n0 minimizes this functional.

We all knew: H −→ Ψn −→ n0(r) =
∫
dr2 . . . drN |Ψ0(r, r2 . . . rN )|2

HK showed: H ←− Vext ←− n0(r).
and E = F [n(r)], δF = 0 for n = n0
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Kohn-Sham Density Functional Theory

With the HK theorems, one may think that we don’t need wave
functions any more. Everything could be calculated directly from the
denstiy n(r). But the only practical DFT is Kohn-Sham theory, where
single-particle orbitals are used, much like in HF theory.

K.S. introduced an auxiliary non-interacting system with the same
density as the real interacting system, but a different external
potential, called effective or Kohn-Sham potential VKS .
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Kohn-Sham Density Functional Theory

The auxiliary system is non-interacting, so it can be solved
exactly. The wave functions are Slater determinants made of
orbitals φi corresponding to VKS(r).

VKS is not known exactly, must be approximated

Make approximation to universal functional E[n],
i.e. to its unknown part, called “exchange-correlation” energy
EXC = Etot − Eext − EH − E0

kin

Functionals: Local Density Approx, GGA, hybrid=HF+GGA

VKS = Vext + VH + VXC , VXC(r) = δEXC [n]/δn(r)

Vext(r)
HK⇐ n0(r)

KS⇔ n0(r)
HK⇒ VKS(r)

⇓ ⇑ ⇑ ⇓
Ψn({r}) ⇒ Ψ0({r}) φi=1,Ne(r) ⇐ φi(r)

real system auxiliary system
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Spectra from HF or DFT

Task: compute 〈Ψn|T |Ψm〉. (Mostly m = 0)
• Independent particle approximation.
Compute molecular orbitals φi (using HF or DFT).
Assume that all Ψn are Slater-determinants made of |{φi}|.

〈Ψn|T |Ψm〉 = 〈φj |T |φi〉 ∆E = εj − εi
• Delta SCF
In reality, HF and DFT are ground state theories, i.e. orbitals only
good for GS. In the excited state, there is a hole. One can do
“constraint” HF calculations for particle-hole excitations. This gives
different orbitals φ̃i and much better excitation energy.

〈Ψn|T |Ψm〉 = 〈SD{φ̃j}|T |SD{φi}〉 ∆E = E[SD{φ̃j}]− E[SD{φi}]
Takes account of orbital relaxation around hole.

• often neglect “spectator” orbitals →
〈Ψn|T |Ψm〉 ≈ 〈φ̃j |T |φi〉 ∆E ≈ ε̃j − εi
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Spectra from HF or DFT – in practice

Take electronic structure code. Compute molecular or band orbitals.
Compute absorption spectra

σ(ω) = 4π2α~ω
∑
f

|〈f |ε · r|c〉|2δ(~ω + εc − εf )

If possible include core-hole effect, i.e. calculate the final state energies
εf and orbitals φf in the presence of a core-hole. Since the core-hole is
localized on one site, the symmetry is generally lowered. In crystals:
use supercell with one core-hole site.
DFT codes can be used, if the basis is sufficiently complete for states
above EF (“virtual molecular orbitals”).
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X-ray absorption in independent particle approximation

From I. Koprinarov, A. P. Hitchcock

1st row elements: 1s = K-edge, transition metals: 2p = L23-edges, etc
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XANES X-ray absorption near-edge structure

Chemical analysis. Example: C K-edge of polymers

From I. Koprinarov, A. P. Hitchcock
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XAS formula

X-ray beam = plane wave with polarization ε.
A0(r) = εA0 exp(iq · r).

~ω < 1 keV ⇔ λ > 12 Å, much larger than core orbital.

⇒ for matrix elements, exp(iq · r) ≈ 1 “dipole approximation”

Instead of p, we can use r. [r, H] = i~
mp and |φ〉’s are eigenstates of H.

Dropping all constants, the XAS intensity

I(ω) =
∑
f

|〈Φf |ε ·
∑
i

ri|Φg〉|2 δ(Ef − Eg − ω)
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From many-electron to single-electron formula

I(ω) =
∑
f

|〈Φf |ε ·
∑
i

ri|Φg〉|2 δ(Ef − Eg − ω)

If |Φg〉 = |Φc
0〉|φc〉 |Φf 〉 = |Φ̃c

j〉|φk〉 〈φk|φc〉 = 0

Sj ≡ 〈Φ̃c
j |Φc

0〉 Eg = Ec0 + εc Ef = Ẽcj + εk ∆j ≡ Ẽcj − Ec0

I(ω) =
∑
j

|Sj |2
∑
k

|〈φk|ε · r|φc〉|2 δ(εk − εc − ω + ∆j)

=
∑
k

|〈φk|ε · r|φc〉|2 δ(εk − εc − ω) ∗
∑
j

|Sj |2δ(ω −∆j)

Convolution of one-electron XAS formula with N − 1 electron
excitation spectrum (∼ core-level XPS).
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Single-electron approximation

Only j = 0 (“fully relaxed channel”) →

I(ω) = |S0|2
∑
k

|〈φk|ε · r|φc〉|2 δ(εk − ε̃c − ω) , ε̃c = εc −∆0

XAS can be calculated approximately from single electron states
φc and φk.

Intensity reduced |S0| < 1. Rest 1− |S0| in many-body excited
states (∼ photoemission shake-up satellites etc) which adds to
background.

Core-level energy shifted by N − 1 electron relaxation energy to
core-hole, ∆0. (In practice εk − ε̃c = Ef − Eg, from ∆SCF calc.)
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Core hole — orbital relaxation — screening

ground state

final state
without relaxation with relaxation
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What is the best potential for final state |k〉 ?

Final state rule
photoelectron wave function
|k〉 computed in presence of
core-hole, and all electronic
states fully relaxed

Slater transition state
compute |c〉 and |k〉 with
half a core-hole
transition: ground (0 holes)
to final (1 hole)

in solids: impurity problem,
supercell calculation
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Dipole selection rules

Matrix element 〈φk|ε · r|φc〉. Expand φk in atomic-like orbitals at sites
Ri.

φk =
∑
ilm

Bk
ilmφilm , φilm(r) = Rkil(ri)Ylm(Ωi) , ri ≡ r−Ri ≡ (ri,Ωi)

Ylm are spherical harmonics = complete, orthonormal set of angular
functions (∼ s,p,d,f. . . orbitals). The core-orbital is localized at site ic,
so only orbitals at ic contribute to the matrix element.
Consider core-s state and linearly polarized light along z, e = z.
e · r = z = rY10

√
4π/3 spherical harmonic

〈φlm|z|φs〉 =

∫
dΩ dr r2 RlY

∗
lm z RsY00 =

1√
3

∫
dr r3RlRs

∫
dΩY ∗lmY10

Ylm orthonormal set ⇒ only (lm) = (10) gives non-zero integral.

⇒ selection rule 〈φlm|z|φs〉 = 0, except for (lm) = pz.
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Light polarization q = 0 linear z, q = ±1 circular left/right.
Wigner-Eckart theorem

〈n′l′m′s′|rq|nlms〉 = δs′s (−1)l
′−m′

(
l′ 1 l
−m′ q m

)
〈n′l′||r||nl〉

Wigner 3-j symbols (. . . ) (=angular integrals) non-zero only for:

l′ = l ± 1 m′ = m+ q s′ = s

dipole selection rules

circular pol., spherical harmonics linear pol., cubic harmonics
q s p0 p1 p−1 q′ s px py pz
0 p0 s,d0 d1 d−1 x px s, de dxy dxz
1 p1 d1 d2 s, d0 y py dxy s, de dyz
−1 p−1 d−1 s, d0 d−2 z pz dxz dyz s, de

de = {dx2−y2 , d3z2−r2}
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Density of states (DOS)

Eigenstates ψk, eigenvalues εk.

ρ(ε) =
∑
k

δ(ε− εk) total DOS

ρ(ε, r) =
∑
k

|ψk(r)|2δ(ε− εk) local (point) DOS

ρilm(ε) =
∑
k

|〈φilm|ψk〉|2δ(ε− εk) partial (ilm) DOS

φilm = normalized basis function centered on site i, symmetry lm
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X-ray absorption and density of states

Iq(ω) =
∑
k

|〈ψk|rq|φc〉|2 δ(εk − εc − ω)

Develop |k〉 in local basis |ilm〉

〈k|rq|iclcmc〉 =
∑
ilm

〈k|ilm〉〈ilm|rq|iclcmc〉

=
∑
±
〈k|ic, lc ± 1,m+ q〉〈ic, lc ± 1,m+ q|rq|iclcmc〉

Localization of |c〉 and selection rules → only one or two terms survive,
e.g. c = s, q = z ⇒ 〈||〉 = 0 except for i = 0, (lm) = p0

Iq(ω) =
∑
±

∑
k

|〈k|icl±m〉〈icl±m|rq|c〉|2 δ(εk − εc − ω)
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Iq(ω) ≈
∑
±
|〈icl±m|rq|c〉|2

∑
k

|〈k|icl±m〉|2 δ(εk − εc − ω)

Iq(ω) ∼ A+ρicl+m(ω + εc) +A−ρicl−m(ω + εc)

K-edge, s→ p, A− = 0. L23 edges often A+ � A−
So, in single electron approximation, the

XAS is approximately proportional to a partial DOS at
absorber site

Example: K-edge, x-polarization. XAS ∼ px-DOS

→ element-resolved / local electronic structure (unoccupied
states)

P. Krüger (CU) Spectroscopy October 2018 33 / 72



Example: SrTiO3, O-K edge

Partial density of states
from DFT (Wien2k) code

XAS spectrum essentially broadened O-p projected DOS. Some
improvement with final state rule.
[G. Ratdke, G. Botton, Microscopy and Microanalysis 2010]
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Multiple scattering

Continuum wave expanded in
energy-dependent spherical waves |ilm〉
located at sites i.

|k〉 =
∑
ilm

Bk
ilm|ilm〉

Bk
ilm =

∑
jl′m′

τilm,jl′m′Ak
jl′m′

Ak
jl′m′ = plane-wave coefficients

τij = scattering path operator

τij = δijti + tiGijtj + ti
∑
k

GiktkGkjtj + . . .

ti atomic scattering matrix (phase shifts)
Gij free electron propagator

Z. Wu et al J. Synchrotron Rad.
(2001)
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Dichroism

= polarisation dependence of light absorption

Linear Dichroism (LD) is the difference in absorption of light
linearly polarized parallel and perpendicular to an orientation axis (e.g.
molecular axis, crystal axis, magnetisation direction)

LD = I(||) − I(⊥) = Iz − Ix

LD is sensitive to anisotropy of electronic density (and/or atomic
structure) around the absorber site
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Linear dichroism

reflects anisotropy of charge
distribution in low symmetry crystal.

α-quartz single crystal

hexagonal, c 6=a ⇒ LD6= 0
I(||) − I(⊥) ∼ ρpz − ρpx

Si K-edge XAS
[Taillefumier et al. PRB 2002]
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Circular dichroism

is the difference in absorption of
left- and right-handed circularly
polarized light.

Chirality/Handedness
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X-ray circular dichroism of chiral molecules

Serine. [Physica Scripta T115, 873]

∼ optical activity. But effect much weaker for x-rays than vis-UV
light.
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X-ray Magnetic Circular Dichroism

Fe K-edge.
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Origin of magnetic circular dichroism

circular light is chiral (= parity-odd)
but also time-reversal odd −→
dichroism for time-reversal broken
states

Chirality/Handedness
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Circular light has angular momentum (helicity)

absorption → angular momentum transferred to orbital moment of
electron

if states orbitally polarized → transition probabilites different for
left/right

→ circular dichroism detects orbital polarization of electronic states

Ex. K-edge. 1s→ p.

XMCD ∼ DOS(p+) - DOS(p−)

orbital magnetic polarization Lz(ε) of p-projected conduction band

However, orbital polarization of conduction-p band usually small,
because spin-orbit coupling � hybridization
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Time-Dependent Density Functional Theory

Generalization of DFT to time-dependent phenomena, i.e. Vext(r, t).
History

1980 Zangwill, Soven linear response theory with LDA kernel (=
time-dependent, adiabatic LDA)

1984 Runge-Gross theorems → equivalent of Hohenberg-Kohn for
time-dependent Vext(r, t) = functional of n(r, t) (and
given initial state).

1995 Casida’s equations Implementation of TD-DFT in quantum
chemistry codes → standard tool for optical spectra

1998 Schwitalla, Ebert 1st application to XAS: L-edge of 3d metals

2003 Stener, Fronzoni et al. implement TD-DFT for XAS in ADF code

2003 Ankudinov et al. TD-DFT in FEFF (Feff9 doc. 2013’: “still
under development”)

2012 Bunau, Joly implement TD-DFT in FDMNES code
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Linear response theory

[A. Zangwill and P. Soven, Phys. Rev. A 21 (1980) 1561]

Perturbation H ′(t) =
∫
ϕext(r, t)n(r, t)dr.

Induced density change δn(r, t) = n(r, t)− n0(r)

Linear Response δn(r, t) =

∫
dr′dt′χ(r, r′; t− t′)ϕext(r

′, t′)

χ(r, r′; t− t′) = −iθ(t− t′)〈0|[n̂(r, t), n̂(r′, t′)]|0〉 , n̂(t) = eiHtn̂e−iHt

χ = reponse function = retarded density-density Green’s function

Harmonic perturbation: ϕext(t) = ϕext(ω) exp(iωt)
⇒ δn(r, ω) =

∫
dr′χ(r, r′;ω)ϕext(r

′, ω).

χ(r, r′;ω) =
∑
m

〈0|n̂(r)|m〉〈m|n̂(r′)|0〉
~ω − (Em − E0) + iη

−
∑
m

〈0|n̂(r′)|m〉〈m|n̂(r)|0〉
~ω + (Em − E0) + iη
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Independent particle response function χ0

χ(r, r′;ω) =
∑
m

〈0|n̂(r)|m〉〈m|n̂(r′)|0〉
~ω − (Em − E0) + iη

−
∑
m

〈0|n̂(r′)|m〉〈m|n̂(r)|0〉
~ω + (Em − E0) + iη

Non-interacting electrons. |0〉, |m〉 = Slater determinants.

⇒ |m〉 = c+p ch|0〉 single particle-hole excitations

χ0(r, r
′, ω) =

∑
hp

φ∗h(r)φp(r)φ∗p(r
′)φh(r′)

~ω − (εp − εh) + iη
− [p↔ h]

Response function in independent particle approximation
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Absorption coefficient

ϕext(r, t) = eE0ε · reiωt (Approx. e−iq·r ≈ 1.) ϕext(r, ω) = eE0ε · r.
Dipole moment

µ(ω) = −e
∫

rδn(r, ω)dr = −e2E0

∫
rχ(r, r′;ω)ε · r′drdr′

Absorption ∼ 〈j ·E〉 =
∫

d
dtµ ·E = E2

0

∑
ab εaσabεb

Absorption coefficient

σ(ω) = −4πα~ω
∫
drdr′ε · r Imχ(r, r′;ω)ε · r′

With χ0 we get

σ0(ω) = 4π2α~ω
∑
hp

|〈φp|ε · r|φh〉|2δ(~ω + εh − εp)

Fermi’s golden rule in 1-particle case
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Linear response in TD-DFT

δn(r, ω) =

∫
dr′dtχ(r, r′;ω)ϕext(r

′, ω)

If the electrons didn’t interact: χ = χ0.

But they do interact. In TD-DFT the interaction is handled as in
DFT, by introducing an auxiliary, non-interacting system with the
same electron density n(r, t). The non-interacting electrons feel an
effective field which replaces the electron-electron interaction.
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Linear response TD-DFT

Real system

n(r)←→ Vnucl(r) n(r, t)←→ Vnucl(r) + ϕext(r, t)

δn(r, t)←→ ϕext(r, t)

Auxiliary system

n(r)←→ VKS[n(r)] n(r, t)←→ VKS[n(r, t)] + ϕext(r, t)

δn(r, t)←→ ϕext(r, t) + δVKS[n(r, t)] = ϕext + ϕind

ϕind(r, t) is induced field due to charge density change δn(r, t).

There a is feedback effect: ϕext → δn→ ϕind → δ2n→ δϕind . . .
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Linear response TD-DFT

In the auxillary system, the electrons are independent, so they respond
with χ0, but not to the external, but to the “local” field ϕext + ϕind

δn = χ ϕext = χ0 (ϕext + ϕind)

ϕind(rt, r′t′) =

∫
dr′dt′K(rt, r′t′)δn(r′t′)

which defines the interaction Kernel K.

ϕind = δVKS = δVH + δVXC

δVH(rt) =

∫
dr′

δn(r′t)

|r− r′|
, δVXC(rt) =

∫
dr′dt′

δVXC
δn(r′t′)

δn(rt)
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Linear response TD-DFT

From χ0 and K, we can calculate the full χ by iteration or inversion

χ ϕext = δn = χ0(ϕext + ϕind) = χ0(ϕext +Kδn) = χ0(1 +Kχ)ϕext

χ = χ0 + χ0Kχ ⇔ χ = (χ−10 −K)−1

In a basis set, this leads to matrix inversion/linear system [Casida]
Alternatively, one can solve interatively for ϕloc = ϕext +Kδn [ZS]

Zangwill, Soven: Adiabatic and local density approximation

δVXC
δn(rt)

=
dVXC
dn

∣∣∣∣
n(r)

δ(t− t′)

In adiabatic approximation, ϕind(t) changes instantaneously with δn(t).
There are no delay or memory effects.
⇒ K(r, r′;ω) is static, i.e. frequency independent.
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Time-dependent DFT

In adiabatic TD-DFT, the kernel can be calculated directly from
standard DFT

if KXC = 0 we get the random-phase approximation (RPA)

the space of excitations is one particle-hole excitations (as in χ0)
but there is mixture and spectral weight transfer

collective oscillation of electron gas (plasmons) OK

double and higher particle hole-excitations (complex multiplets)
cannot be reproduced with static kernels

going beyond the adiabatic approximation is difficult
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X-ray absorption spectra with TD-DFT

Ca

Schwitalla, Ebert, PRL 80, 4586, 1998

VO3Cl.
Fronzoni,Stener.. JPCA 113, 2914, 2009

Ankudinov..Rehr, PRB 67, 115120, 2003
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Green’s functions and quasi-particles

Green’s functions are the favorite tool of many-body theorists

GF describe propagation of particles interacting with many others

Free particles’ properties: bare mass, free dispersion p2/2m . . .

Under interaction, the particles properties become renormalized.
→ different dispersion ε(k), effective mass, finite lifetime, . . .
the particles become “dressed”, or “quasi-particles”.

More generally, quasi-particles are the elementary excitations of
the interacting many-body system, including “dressed”
single-electron states (e.g. polarons) and collective excitations (e.g.
phonons, plasmons, etc)

There’s a Green’s functions for each of them . . .
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Green’s functions in scattering theory

Free particles H0 = − ~2
2m∇

2. (E −H0)φ = 0.
Add potential H = H0 + V . (E −H0)ψ = V ψ

ψ = φ+ [E −H0]
−1V ψ = φ+ G0V ψ = φ+ G0Tφ

G0 = (E −H0)
−1 free Green’s Fct. E → E ± iη ⇒ retarded/advanced.

T = scattering matrix. Tφ = V ψ.

T = V + V G0V + . . . Born series.

Full Green’s function G = (E −H)−1

G = (E −H0 − V )−1 = (G−10 − V )−1 = G0 + G0V G0 + . . .

Plane wave basis H0|k〉 = εk|k〉, εk = ~2k2/2m.

G0(k,k′;E) ≡ 〈k|(E −H0)
−1|k′〉 =

δkk′

E − εk
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Green’s functions in many-body theory

Retarded 1-part.GF: G(r, r′, t− t′) = −iθ(t− t′)〈0|[Ψ(rt),Ψ+(r′t′)]|0〉

= Probability amplitude for a particle at rt if one was added at r′t′

→ 1-part. addition/removal spectrum = inverse/direct photoemission

Non-interacting: H0 =
∑

k εkc
+
k ck ⇒ G0(k, ω) = (ω − εk)−1 = G0

Interacting: G = G0 +G0ΣG ⇔ G−1 = G−10 − Σ

Dyson equation. Σ = self-energy

Free space or crystal G−1(k, ω) = ω − εk − Σk(ω)

ReΣ → shift of eigenvalue (band). ImΣ → finite lifetime τ = ~/ImΣ.

Describes quasiparticles (Fermi-liquid theory)
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GW approximation

In 1965 Lars Hedin reformulated many-body problem in terms of a
closed set of equations between
G = Green’s function ↔ Σ = self-energy ↔ P = polarization
↔ W = screened interaction ↔ Γ = vertex function

Neglect Γ −→ “GW approximation”
= very successful for weakly correlated systems, e.g. semi-conductors

Coulomb interaction

v(r, r′) =
e2

4πε0

1

|r − r′|
bare

W (r, r′) =
e2

4πε0εr

1

|r − r′|
statically screened

W (r, r′;ω) =
e2

4πε0

∫
dr′′

ε−1(r, r′′;ω)

|r′′ − r′|
dynamically screened

F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61 , 237 (1998)
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GW approximation

In practice usually
non-self-consistent version: G0W0

DFT → G0, χ0

ε−1(r, r′;ω) =
δ(r − r′) +

∫
dr′′v(r, r′′)χ0(r

′′, r′;ω)
(RPA)

W0(r, r
′;ω) =∫

dr′′ε−1(r, r′′;ω)v(r′′, r′)

Σ = i
∫
G0W0

G = (G−10 − Σ)−1
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Bethe-Salpeter Equation (BSE) approach

historically: explicit solution of interacting two-particle problem

absorption spectra: interaction between excited electron and hole

compute electron and hole Green’s functions Ge(1, 1
′) and

Gh(1, 1′) using, e.g. GW approximation.

electron-hole GF
Geh(1, 2; 1′, 2′) =

Ge(1, 1
′)Gh(2, 2′) +

∫
Ge(1, 3)Gh(2, 4)K(3, 4; 5, 6)Geh(5, 6; 1′, 2′)

Kernel K = bare exchange and screened Coulomb interaction W

describes well excitonic effects

very accurate for 1-electron – 1-hole interaction, but lacks
multi-electron excitations (e.g. multiplets)
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X-ray absorption spectra with BSE

E. L. Shirley, PRL 80, 794 (1998)

idem JESRP 144, 1187 (2005) → SrTiO3
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Photoelectron spectroscopy

[wikipedia]

Energy, angular and spin destribution of photoexcited electrons
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XPS: X-ray Photoelectron Spectroscopy

Elemental Analysis Chemical Shift

[S. Hüfner, Photoelectron Spectroscopy]

peak position: Electron Spectroscopy for Chemical Analysis ESCA

lineshape: electron correlation effects due to core-hole screening
asymmetry, plasmons peak, charge-transfer satellites, multiplets
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XPD: X-ray Photoelectron Diffraction

angular distribution of XPS signal

needs single crystal surface but no long-range
order of impurities

→ local structure probe with chemical
sensitivity → impurities/adsorbates

theory: real-space multiple scattering in
finite cluster, e.g. EDAC code

[M.

V. Kuznetsov et al., J. Phys. Soc. Jpn 87, 061005 (2018)]
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ARPES: Angle-Resolved Photoelectron Spectroscopy

3-step model

1 photon absorption in bulk
→ vertical band transition
(k, εi)→ (k, εf ), εf = εi + ~ω

2 propagation to surface with damping
ψ(r) = φnk(r)ez/λ

3 transmission through surface
matching with free wave eik

′·r

k′|| = k||, k′2⊥ = k2⊥ + 2mV0/~2
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ARPES: Angle-Resolved Photoelectron Spectroscopy

A. Damascelli, 2004.

Phys. Scr. T109, 61.
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Spin-resolved ARPES – Rashba effect

BiAg2/Ag(111)

C. R. Ast et al.,

PRL 98, 186807

(2007) Calculated Sx,Sy,Sz at -0.55 eV
R. Noguchi et al. PRB 2017

System is non-magnetic. Strong spin-orbit coupling and breaking of
inversion symmetry cause large spin-polarization of bands.
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Self-energy(2) — Dynamical mean field theory

Strongly correlated systems: 3d-metal oxides, 5f elements . . .
Competition between kinetic energy and local Coulomb repulsion
→ band magnetism, metal-insulator transition, high-Tc
super-conductivity (?)

Hubbard model

H =
∑
kσ

εknkσ + U
∑
i

ni↑ni↓ =
∑
ijσ

tijc
+
iσcjσ + U

∑
i

ni↑ni↓

Gkσ(ω) = [ω − εk − Σkσ(ω)]−1

Static mean-field theory (e.g. exchange, HFA)

Σkσ(ω) = U〈nk−σ〉 6= fct(ω)

Dynamical mean-field theory

Σkσ(ω)→ Σσ(ω) 6= fct(k)
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Self-energy(2) — Dynamical mean field theory

In DMFT, Hubbard model (U 6= 0 on all sites) is mapped on Anderson
impurity model (U 6= 0 only at one site) → Σ(ω) local, k-independent.
Self-consistency: Anderson impurity GF coincide with local Hubbard
(lattice) Green’s function

Gimp(ω) = G00(ω) =
∑
k

[ω + εk − Σk(ω)]−1

Approximation of DMFT: Σk(ω) = Σimp(ω)
This gives self-consistent equation for Σimp(ω)
The difficult part is the solution of the Anderson impurity model.
Various numerical “solvers” exist, with different advantages and
disadvantages.
DMFT has been combined with DFT.
DFMT becomes exact in infinite dimensions [W. Metzner PhD 1999].
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Spectral function

Ak(ω) = − 1

π
ImGk(ω)

non-interacting system
A0
k(ω) = δ(E − εk)

interacting system Ak(ω)
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Courtesy of LMU H. Ebert’s group
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Courtesy of LMU H. Ebert’s group
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Courtesy of LMU H. Ebert’s group
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That’s all

Thanks for your attention.
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