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@ Light-matter interaction

© Basic electronic structure theory
e Hartree-Fock approximation
@ Density Functional Theory

© X-ray absorption in independent particle approximation
@ Dipole selection rules
e X-ray absorption and density of states
@ Linear dichroism and magnetic circular dichroism

@ Lincar response and time-dependent DFT

© Green’s functions and quasi-particles
e Self-energy(1) — GW approximation
e Particle-hole interaction — Bethe-Salpeter Equation

@ Photoelectron spectroscopy
@ Core-level photoemission and photoelectron diffraction
@ Valence photoemission — spin- and angle-resolved
o Self-energy(2) — Dynamical mean field theory
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Light-Matter interaction

e photons (Energy hw, wave vector q) get absorbed or scattered in
matter by electrons, in quantum states 1,
— scattering off nuclei (— phonons) is weak and not considered here

o (wq,vy) — (—,9y) light absorption

o (wq,1y) = (wd',1y) elastic (Bragg) scattering: momentum
transfer to lattice — structural probe (XRD)

o (wq,1y) = (W'q',1y) inelastic scattering: momentum and energy
transfer to electrons — probes electronic excitations

hw q elastic
scattering

inelastic
scattering

absorption

photo-
emission
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Light-Matter interaction

hw g elastic
scattering

inelastic
scattering

absorption
photo-
emission

e Absorption: (wq,¥y) — (—, %) light absorption

o if Ky > Ey,. then possible photoelectron emission
Measure energy, angle, spin distribution
— most direct information about electronic states
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Light-Matter interaction

o H=H,+ H,+ Hyy

@ Here: classical treatment of light
(quantized photon field: see J.J.Sakurai, Adv. Quantum Mechanics)

@ electron momentum p — p — eA/c

2

2mc?

(&
Hy=-——(p-A+A-
; ch(p + A -p)+

A2

@ A vector potential. E = —%8A/8t, B=VxA

e Electromagnetic wave A(r,t) = Agexp(iq - r — iwt)

e Coulomb gauge V-A=0—p-A—A -p=—-thV-A =0
e Gauge freedom ? — Christian Brouder’s lecture

e A - p — absorption/stimulated emission

e A? non-resonant scattering
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Perturbation theory

o light-electron interaction is a weak coupling a = €?/hc = 1/137 =
Perturbation theory in Hiut.

e except for laser, light intensity /number of photons is small =
lowest order terms often sufficient

e transition rate for oscilating perturbation Hin(t) = V exp(—iwt)

d 27
Wrg = %Pf%—g = f|<f‘T|9>’25(Ef — By — hw)

(fIVTm)(m|V]g)

(1Tlg) = (7IVIa) + 3 ot

1st order: Fermi’s golden rule. 2nd order: Kramers-Heisenberg.
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Transition amplitudes

o Vo,=-—A-p Il-photon-electron interaction
e 1st order — photon absorption (4emission) (f|T|g) ~ (f|A - p|g)
e 2nd order —

(15! Im)(m|Vo|g)
— hw + By — Epy + il /2

(fIT|g) =

— resonant scattering (inelastic: resonant Raman scattering)

o V =1V, + V4 autoionization operator: electron-electron scattering
with continuum states ( c¢,k|1/r| p,q )

(fIVar|m)(m|Vs|g)
— hw+ Ey — By +il,/2

(fIT|g) =

— resonant Auger electron emission
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Electronic structure theory

One-electron system, e.g. hydrogen atom. H1 = €.

13.6 eV

Bound states wnlm(r)xs(U ) €Enlms — — 2

Scattering states Yerm () xs(0) e >0 (any)

The wave functions ¥ (r) and all excitation energies are known exactly.

Atoms (#H), molecules, solides: N, > 1 electrons = trouble

2

€
H = Z( vz+vnud(rz>>+z_
= Iri —

H\IJ:E\P, \If(rlo'l,I'QO'Q,...I'NO'N)

This electronic many-body problem cannot be solved exactly.
Strong approximations are needed.
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Electronic structure theory

Most popular approaches for electron spectroscopy:
Q@ Hartree-Fock approximation
@ “Post-HF”, configuration interaction
@ Density functional theory

@ Time-dependent DFT
@ Quasi-particle Green’s function methods

o GW approximation (semiconductors)
o Dynamical mean field theory (strongly correlated systems)

@ Bethe-Salpeter equation
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Pauli principle, Slater deterimants

Simplest many-electron wave function: product of one-electron states
(spin-orbitals). Why?

If H(xi,x0) = Hy(x1) + Hp(x2) then W(xy,x2) = Ya(x1)p(x2)

But electrons are indistinguishable — Pauli-principle
U antisymmetric under exchange V(x1,x2) = =WV (2, x1)
Antisymmetrized product —

U (x1, 22) = [Valz1)p(z2) — Yal22)hp(21)]/ V2
N electrons — Slater-determinant

¢1(r1)  ¢1(z2) ... ¢1(aN)
oo L | ¢r) d2x2) ... daf2n)

¢1;(.$1) ¢N(~;U2) ¢N.(.x.N)
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Hartree-Fock approximation

Assume ground state is Slater Determinant. HFA gives “best” orbitals.
H = § [ v2+‘/extrz]‘|—g —
1< |r7’ T |
J
“Rayleigh-Ritz” variational principle

(VIH|P) OE[Y]

B ="mmy - e

=0
Assuming W=Slater Deteterminant results in Hartree-Fock equations
1 .
—5 V7 + Vet(r) + Vi (v) 4+ Vx| én(r) = €nd(r)

The ground state wave function is the Slater-determinant made of the
n = N, /2 orbitals of lowest energy. WA = |p1 ... ¢,].
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Hartree-Fock equations

Hw + Vext(r) + Vi (r) + VX] n(r) = €n(r)

In HF approximation, the dynamical electron-electron interaction is
replaced by a static mean (“effective”) field potential Vi + V.

=3 farlfelh = ot

Vi “Hartree potential” = classical electrostatic potential of electronic
charge density. Repulsive

same spin

Vx ¢n(r) = Z /d’(’b* b (1)6n (1)

Ir —r/|

Vx “Exchange potential”. No classical analogue. Due to antisymmetry
of ¥. Non-local. Attractive.
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Configuration Interaction

@ The HF (or “SCF=self-consistent field”) method, is the standard
in quantum chemistry / molecular orbital theory. It has been
extremely successful for molecules.

e Difference between exact theory and HFA is called “correlation”.

@ The most straightforward method to include correlation effects is
Configuration Interaction (C.I.)

e C.I. wave functions are linear combinations of Slater Determinants,
including HF' ground state and particle-hole excitations.

How?
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Configuration Interaction

HF |GS> singles doubles triples

Tl T
=T -

e
2T -
T2 Tr

e compute HF orbitals 1,2,...n,n+1... (n = N./2)
@ build S.D. basis: not only the HF-GS |1 2...n/|, but also
particle-hole excitations [1...hy...hy...n p1 p2|

e diagonalize hamiltonian in the space of these SD
e — “correlated” wave functions = linear combination of S.D.
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Configuration Interaction

@ is very precise

e computational cost scales exponentially with number of electrons.
= full C.I. only possible for about 10 electrons (CHy).

e restricted CI: e.g. only single + double particle-hole excitations

“CAS-SCF” complete active space self-consistent field

o select the “active space” = small set of molecular orbitals (around
HOMO-LUMO) that you think are relevant for correlation
e do CI calculation with all particle-hole excitations in active space
e case of transition metal complexes:
active space = MOQO’s with dominant metal-d character.
o implemented for L-edge XAS by Ogazawara, Ikeno et al.
— “ab initio ligand field multiplet” method
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Complete active space self-consistent field CAS-SCF

HF |GS> singles doubles triples
__________ !
- S 1 1
o S ) 1
é 1] 1 | S +
++ 1+ —¥ —4 1+
= = +— +H
e select an “active space” = small set of molecular orbitals (around

HOMO-LUMO) that you think are relevant for correlation
@ do CI calculation with all particle-hole excitations in active space
@ case of transition metal complexes:

active space = MO’s with dominant metal-d character.
e implemented for L-edge XAS by Ogazawara, Ikeno et al.

— “ab initio ligand field multiplet” method

P. Kriiger (CU) Spectroscopy October 2018 16 / 72



Density Functional Theory (DFT)

Hartree-Fock is difficult for solids and performs poorly for metals
1964: DFT becomes a new paradigm for electronic structure theory

Idea: use electron density n(r) as basic object of the theory rather
than the many-electron wave functions ¥, (r1,...ry).
Hohenberg-Kohn theorems on interacting, inhomogenous electron gas:

@ Ground state electron density ng(r) uniquely determines external
potential Veyt(r) (and thus H and thus in principle ¥,,)

© The total energy is a unique functional of the density. The exact
ground state density ng minimizes this functional.

We all knew: H — U, — no(r) = [dry...dry|Po(r,re. .rN))?

HK showed: H «— Viy <— no(r).
and E = F[n(r)], F = 0 for n = ng
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Kohn-Sham Density Functional Theory

With the HK theorems, one may think that we don’t need wave
functions any more. Everything could be calculated directly from the
denstiy n(r). But the only practical DFT is Kohn-Sham theory, where
single-particle orbitals are used, much like in HF theory.

K.S. introduced an auxiliary non-interacting system with the same
density as the real interacting system, but a different external
potential, called effective or Kohn-Sham potential Vi g.

Real system, Auxilliary system,
interacting non-interacting
vV O
@ - E€ @ \/
\ “a o \ off A.‘

Y kY

Y Y

i M
“xvext/‘ \\xvex-l/

n(r) O n(r) O
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Kohn-Sham Density Functional Theory

@ The auxiliary system is non-interacting, so it can be solved
exactly. The wave functions are Slater determinants made of
orbitals ¢; corresponding to Vi g(r).

e Vks is not known exactly, must be approximated

e Make approximation to universal functional E[n],

i.e. to its unknown part, called “exchange-correlation” energy

EXC — Etot - Eext - EH - Egin

Functionals: Local Density Approx, GGA, hybrid=HF+GGA
© Viks = Vext + Vi + Vxc, Vxc(r) = dExc(n]/dn(r)

Vext (1) = no(r) < no(r) = Vks(r)

4 T i 4
Un({r}) = Wol{r}) Gi=1,N.(r) = ¢i(r)

real system auxiliary system
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Spectra from HF or DFT

Task: compute (U, |T|V,,). (Mostly m = 0)

e Independent particle approximation.

Compute molecular orbitals ¢; (using HF or DFT).

Assume that all ¥, are Slater-determinants made of |{¢;}|.
(Un|TWy) = <¢J|T‘§bz> AE = €j — &

e Delta SCF

In reality, HF and DFT are ground state theories, i.e. orbitals only
good for GS. In the excited state, there is a hole. One can do
“constraint” HF calculations for particle-hole excitations. This gives
different orbitals ¢; and much better excitation energy.

(Up|T| W) = (SD{;HT|SD{¢i})  AE = E[SD{¢;}] — E[SD{¢;}]

Takes account of orbital relaxation around hole.

e often neglect “spectator” orbitals —

(U | T W) ~ <(5j|T bi) AFE =~ €5 — €
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Spectra from HF or DFT — in practice

Take electronic structure code. Compute molecular or band orbitals.
Compute absorption spectra

o(w) = 4dr’ahw Y " |(fle- rlc)[*5(hw + €. — €5)
f

If possible include core-hole effect, i.e. calculate the final state energies
e and orbitals ¢ in the presence of a core-hole. Since the core-hole is
localized on one site, the symmetry is generally lowered. In crystals:
use supercell with one core-hole site.

DFT codes can be used, if the basis is sufficiently complete for states
above Er (“virtual molecular orbitals”).
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X-ray absorption in independent particle approximation

35000 - C K-edge Empty
Continuum
30000 A states
. 25000 - A
B .
Ft Fermi
-ﬁ- 20000 - N K-edze level
2
E 15000 - O Koedge
=
10000 -
jl:”:”:l T T T T T 1 ! Core
100 200 300 400 00 al0 | 200 levels
Fhoton Energw V]

From I. Koprinarov, A. P. Hitchcock

1st row elements: 1s = K-edge, transition metals: 2p = L23-edges, etc
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XANES X-ray absorption near-edge structure

Chemical analysis. Example: C K-edge of polymers

J Ufm.-a-lfti\:_wj ’

Nylon 6

Optical density / arbitrary

Tonization Threshold

LUMO —x—

HOMO —@—8—0+0—

.

Fyee

: L PAR |
: i s— ‘Hs  o—s —t j_{'—(] H H i
: — 1'& iJ ‘—|# k:—{]—c—lﬁ x: PP :_E " -
Core State——@—O0——— N S N .
||||||||||||||||||||J|||||||||||||||!.f’Ir rilf} IR ATETENE T AT ANA A ST S AT RAAE A
284 286 288 290 292 294 296 284 286 2B 290 292 294 296

Photon energy / eV

Fig. 3 C 1s NEXAFS spectra of some common polymers. Abbreviation as follows: PC, polycarbonate; PET,
poly(ethylene terephthalate): PPTA, poly(p-phenylene terephthalamide); PAR, polyacrylate; PS, polystyrene; SAN,
styrene-acrylonitrile; Nylon-6, poly(e-caprolactam); PP, polypropylene; PE, polyethylene. (Figure adopted from

[Ade 97])

From I. Koprinarov, A. P. Hitchcock
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XAS formula

X-ray beam = plane wave with polarization e.
Ao(r) = €Agexp(iq-r).

fiw < 1 keV < X > 12 A, much larger than core orbital.
= for matrix elements, exp(iq-r) ~ 1 “dipole approximation”
Instead of p, we can use r. [r, H] = %p and |¢)’s are eigenstates of H.

Dropping all constants, the XAS intensity

I(w)=> (Pfle- > ri|®y)[* 6(Ef — By — w)
f i
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From many-electron to single-electron formula

I(w) =D |(®rle- Y xil®)[* 6(Ey — By —w)
f 0
It [g) =[PG)oc)  |®p) = [5)on)  (dmlde) =0
S =(P5|BG)  Eg=E§+e Er=FE+e Aj=E—

j:

Ly

I(w) =D 191> D> [drle - rlde)? o(er — ec — w + Ay)
J k

=D _[(@le xlg)l olex — e —w) x 3 [SiP0(w = Ay)

k

Convolution of one-electron XAS formula with N — 1 electron
excitation spectrum (~ core-level XPS).

P. Kriiger (CU) Spectroscopy October 2018



Single-electron approximation

Only j = 0 (“fully relaxed channel”) —

I(w) = ’SO‘2Z [{prle - r|pe)* 6(ep — & —w) €c =€ — Ag
k

@ XAS can be calculated approximately from single electron states
¢ and ¢p.

o Intensity reduced |Sp| < 1. Rest 1 — |Sp| in many-body excited
states (~ photoemission shake-up satellites etc) which adds to
background.

@ Core-level energy shifted by NV — 1 electron relaxation energy to
core-hole, Ag.  (In practice ¢, — €. = Ey — Ey, from ASCF calc.)
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Core hole — orbital relaxation — screening

ground state

final state

without relaxation with relaxation
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What is the best potential for final state |k) 7

Final state rule
photoelectron wave function
|k) computed in presence of
. core-hole, and all electronic
states fully relaxed
T4 k>

1nitial final

Slater transition state
% compute |c¢) and |k) with
valence half a core-hole
a2 transition: ground (0 holes)
to final (1 hole)

Fo

I o~ core

in solids: impurity problem,
supercell calculation
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Dipole selection rules

Matrix element (¢i|€ - r|¢.). Expand ¢y in atomic-like orbitals at sites
R;.

Sk = Blinbim »  Gum(r) = Ri(ri)Yom(Q), ri=r—Ri= (r;, Q)
ilm

Y}, are spherical harmonics = complete, orthonormal set of angular
functions (~ s,p,d,f...orbitals). The core-orbital is localized at site i,
so only orbitals at 7. contribute to the matrix element.

Consider core-s state and linearly polarized light along z, e = z.
e-r=2z=rY\/47/3 spherical harmonic

1
(Gim|2]0s) = / AQdrr® RiYy, = RiYoo = = / dr R/ R, / dQY;;, Yio

Y}y orthonormal set = only (Im) = (10) gives non-zero integral.

= selection rule (¢ |2|¢s) = 0, except for (Im) = p,.
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Light polarization ¢ = 0 linear z, ¢ = +1 circular left /right.
Wigner-Eckart theorem

1

(n'I'm/s|rg|nims) = 0y G ( —m’ ¢ m

) il

Wigner 3-j symbols (...) (=angular integrals) non-zero only for:

' =141 m =m+q s’ =s

dipole selection rules

circular pol., spherical harmonics linear pol., cubic harmonics

g s P M p-1 ¢ | s  Pa Py p-

0 Po SydO dl d—l x Pz S, de d:r:y d:l:z

1 P1 dy d2 S, dO Y | Py dwy S, de dyz
—1 P-1 d—l S, dO d—2 < Pz dxz dyz S, de

de = {dwz_y2, d322_r2}
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Density of states (DOS)

Eigenstates 1, eigenvalues €.

= Z d(e —ex) total DOS

Z W (r)|*6(e — €) local (point) DOS

Pitm (€ Z\ (Ditm|Vk) ] d(e — ex) partial (ilm) DOS

®;1m = normalized basis function centered on site ¢, symmetry Im
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X-ray absorption and density of states

=D [(nlrglge)? d(e, — e — w)
k
Develop |k) in local basis |ilm)

(klrqlicleme) =Y (kl|ilm)(ilm|rq|icleme)

ilm
= (klic,le £ 1,m + q){ic, lc & 1,m + q|rglicleme)
+

Localization of |c¢) and selection rules — only one or two terms survive,
e.g. c=s5,q=2= (||) =0 except for i =0, (Im) = po

§:§:|M%&m,%&mvﬂﬂ2(k—fc w)
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I(w) ~ ) [iclemlrgle)? Y [(kliclam)[® 6(ex — ec —w)
+ k

Iy(w) ~ Aipigpm(w+€) + A_pig_m(w + €)

K-edge, s -+ p, A_ = 0. L23 edges often Ay > A_
So, in single electron approximation, the

XAS is approximately proportional to a partial DOS at
absorber site

Example: K-edge, z-polarization. XAS ~ p,-DOS

— element-resolved / local electronic structure (unoccupied
states)
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Example: SrTiO3, O-K edge

Partial density of states ] A Exp
. ; C
from DFT (Wien2k) code S fe
2 | ™ A K E & |
l i D_p - -7.. f L W7

1 F b j | + |
0 i | I . — 1| et + core-hole

- i ' : " =

. ‘B
o | Ti-3d 5
Zr .| | 1 =
— e
1 i broadened DOS

4 Sr-4d
2r ) | s
i L WSS, W R—_ |

o ] 0-p DOS
4 j | j J ol .

v 7 1 I Y _r‘_"l‘ N P N P .

o F| ki I'I'_ L ol i ]
T 1 a 5 1 1% @ 3% 0 5 10 15 20

Energy beyond Fermi level (eV)

XAS spectrum essentially broadened O-p projected DOS. Some
improvement with final state rule.

|G. Ratdke, G. Botton, Microscopy and Microanalysis 2010]
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Multiple scattering

Continuum wave expanded in
energy-dependent spherical waves |ilm)
located at sites 1.

_ k . i O K edge
k) = 2 :Bilmlzlm> i srTio, ]
ilm N C D i
A i
E
= k Exp 4
k k =
Biim = E Tilm,jl’m’Ajl’m’ i B =
jl’m’ %
k = I
. =
AZym = plane-wave coefficients : [ i
Ti; = scattering path operator ?
@
Tij = (Sijti +tiGijt; + t E Gikthkjtj + ... i
k i

‘4_ I -10 -5 ‘ 0 I 5 l 10 l 156 I 20 l 25
\\ // ENERGY (eV)
@

Z. Wu et al J. Synchrotron Rad.

. . . . (2001)
t; atomic scattering matrix (phase shifts)

(G;; free electron propagator
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Dichroism

= polarisation dependence of light absorption

Linear Dichroism (LD) is the difference in absorption of light
linearly polarized parallel and perpendicular to an orientation axis (e.g.
molecular axis, crystal axis, magnetisation direction)

LD = I(|)) = I(L) = L. — L,

P —14:0

LD is sensitive to anisotropy of electronic density (and/or atomic
structure) around the absorber site
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Linear dichroism

reflects anisotropy of charge
distribution in low symmetry crystal.

a-quartz single crystal

hexagonal, c£a = LD+ 0
I(l]) = I(L) ~ ppz — ppe

Si K-edge XAS
[Taillefumier et al. PRB 2002]

P. Kriiger (CU) Spectroscopy

Absorption (arbit. units)

Absorption (arbit. units)

PHYSICAL REVIEW B 66, 195107 (2002)

XNLD (arbit. units)
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Circular dichroism

LEFT

is the difference in absorption of
left- and right-handed circularly
polarized light.

RIGHT
Right circularly polarized light g
- z
=0 z=0, view from above Vv
X

t=T/

O

(AR

t=0

X Lz<0

right screw clockwise rotation

Lz>0
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X-ray circular dichroism of chiral molecules

3 -
:‘ﬁh I.O-(a)
=
5
'E’; 05F
0. O 0. .0 E
Q\\ o . A =
C c 2
‘ f + s
HgN’L—CIIH HC——NH; N
Ha HaoC
OH OH e
o
L-Ser D-Ser E
E
Z 04 : : : : : :
525 530 535 540 545 550 555 560

Photon Energy / eV
Serine. [Physica Scripta T115, 873]

~ optical activity.  But effect much weaker for x-rays than vis-UV
light.
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X-ray Magnetic Circular Dichroism

VOLUME 58, NUMBER 7 PHYSICAL REVIEW LETTERS 16 FEBRUARY 1987

Absorption of Circularly Polarized X Rays in Iron

G. Schiitz, W. Wagner, W. Wilhelm, and P. Kienle @
Physik Department, Technische Universitdt Miinchen, D-8046 Garching, West Germany

R. Zeller
Institut fur Festkorperforschung der Kernforschungsanlage Jilich, D-5175 Julich, West Germany
and

R. Frahm and G. Materlik

Hamburger Synchrotronstrahiungsiabor am Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, West Germany
(Received 22 September 1986)

a —

i Fe K-edge.
- .55— b :;h ‘ ,5; b ‘
ucfo?l.lm A*M i i WA\\H A
= or y ' I : !
AT MﬁIM i w Vi e

5| " 5'_- o |

0 020 30 T 50 100 150 200
E<E,-E, leV) E<E,~E, (aV)

FIG. 1. (a) Absorption [o/I of x rays as function of the en-
ergy E above the K edge of iron and (b) the difference of the
transmission Al/J of x rays circularly polarized in and opposite
to the direction of the spin of the magnetized 4 electrons.

P. Kriuger (CU)

FIG. 2. (a) Extended x-ray absorption fine structure of iron
in the energy region up to 200 eV above Ep and (b) the spin-
dependent transmission Al/l. The energy region marked by
dashed lines corresponds to the energy region shown in Fig. 1.
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Origin of magnetic circular dichroism

RIGHT LEFT
circular light is chiral (= parity-odd)
but also time-reversal odd —
dichroism for time-reversal broken
states
Z Z
Right circularly polarized light :" "t
- Z
t=0 z=0, view from above Y Y
& | ' ’
1 , @D o@
t=0 Lz<0
’ x D
right screw clockwise rotation 1z>0
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Circular light has angular momentum (helicity)

absorption — angular momentum transferred to orbital moment of
electron

if states orbitally polarized — transition probabilites different for
left /right

— circular dichroism detects orbital polarization of electronic states
Ex. K-edge. 1s — p.

XMCD ~ DOS(p4+) - DOS(p-)

orbital magnetic polarization L, (€) of p-projected conduction band

However, orbital polarization of conduction-p band usually small,
because spin-orbit coupling < hybridization
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Time-Dependent Density Functional Theory

Generalization of DFT to time-dependent phenomena, i.e. Vey(r, t).
History

1980 Zangwill, Soven linear response theory with LDA kernel (=
time-dependent, adiabatic LDA)

1984 Runge-Gross theorems — equivalent of Hohenberg-Kohn for
time-dependent Voy(r,t) = functional of n(r,¢) (and
given initial state).

1995 Casida’s equations Implementation of TD-DFT in quantum
chemistry codes — standard tool for optical spectra

1998 Schwitalla, Ebert 1st application to XAS: L-edge of 3d metals
2003 Stener, Fronzoni et al. implement TD-DFT for XAS in ADF code

2003 Ankudinov et al. TD-DFT in FEFF (Feff9 doc. 2013’: “still
under development”)

2012 Bunau, Joly implement TD-DFT in FDMNES code
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Linear response theory

[A. Zangwill and P. Soven, Phys. Rev. A 21 (1980) 1561]

Perturbation H'(t) = [ @ext(r,t)n(r,t)dr.
Induced density change dn(r,t) = n(r,t) — n%(r)

Linear Response on(r,t) = /dr’dt’x(r, vt — ) pext (', )

X(r, 't —1') = —if(t — ¢)(0|[a(r, t), a(r', )][0) ,  A(t) = e

x = reponse function = retarded density-density Green’s function

Harmonic perturbation: eyt (t) = wext(w) exp(iwt)
= on(r,w) = [dr'x(r,r';w)Pext (v, w).

/oy N (O[a(r) [m) (m|a(x")[0) (0l (x") [m) {m|n(r)|0)
X(r’r,W) _Z hw—(Em_EO)+":77 _Z hw+(Em_E0)+i77

m m
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Independent particle response function Yy

iy N (O[a(r) [m) (m|a(x")[0) (0l (x") [m) {m|n(r)|0)
X(r’r,W) _Z hw—(Em_EO)+":77 _Z hw+(Em_E0)+i77

m m

Non-interacting electrons. |0), |m) = Slater determinants.

= |m) = cfcp|0)  single particle-hole excitations

xo(r,v'yw) =" 7 (r) dp (1) 05 (x") b (r)

hw — (ep — €n) + 1) e

hp

Response function in independent particle approximation
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Absorption coeflicient

ext (T, 1) = eEge - re™? (Approx. e 4T &2 1.) Qexi(r,w) = eFge - r.

Dipole moment
p(w) = —e/rén(r,w)dr = —¢*E) /rx(r,r/;w)e -’ drdr’
Absorption ~ (j-E) = [ Ly - E=E2Y" , c.oupe
Absorption coefficient
o(w) = —4drahw / drdr’e - r Imy(r,r’;w)e - 1’

With xg we get

oo(w) = dm’ahw Y (gple - /o) *6(hw + € — €p)
hp

Fermi’s golden rule in 1-particle case
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Linear response in TD-DFT

on(r,w) = /dr’dtx(r, r'; W) Pext (T, W)
If the electrons didn’t interact: y = xo.

But they do interact. In TD-DFT the interaction is handled as in
DFT, by introducing an auxiliary, non-interacting system with the
same electron density n(r,t). The non-interacting electrons feel an
effective field which replaces the electron-electron interaction.
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Linear response TD-DFT

Real system
n(r) <— Viue(r) n(r,t) <— Viucl(r) + Pext(r, 1)

on(r,t) <— Yext(r,t)

Auxiliary system

n(r) «— Vkg[n(r)] n(r,t) «— Vks[n(r,t)] + @ext(r, t)
on(r,t) «— Yext(r,t) + dVks[n(r,t)] = @ext + Pind

¢ind(r,t) is induced field due to charge density change on(r,t).

There a is feedback effect: ey — 61 — Ving — 62N — 6Pind - - -
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Linear response TD-DFT

In the auxillary system, the electrons are independent, so they respond
with g, but not to the external, but to the “local” field @ext + ©Vind

on = X Pext = X0 (@ext + Spind)

ina(rt, T't") = / dr'dt' K (rt, o't ) on(r't’)
which defines the interaction Kernel K.

Yind = 0Vks = 0V + oVxc
on(r't)

v — 1|

SVxo
on(r't’)

5V (rt) = / ar’  SVxo(rt) = / dr’dt 5 (rt)
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Linear response TD-DFT

From xo and K, we can calculate the full x by iteration or inversion

X Pext = 01 = X0(Pext + Pind) = X0(Pext + KIn) = x0(1 + KX)Pext

X=xo+txKkx & x=K'—-K)

In a basis set, this leads to matrix inversion/linear system [Casida]
Alternatively, one can solve interatively for ¢, = @ext + Kon [ZS]

Zangwill, Soven: Adiabatic and local density approximation

oVxc _ dVxc 5(t — 1)
on(rt) dn |

In adiabatic approximation, inq(t) changes instantaneously with dn(t).
There are no delay or memory effects.
= K(r,r';w) is static, i.e. frequency independent.

P. Kriiger (CU) Spectroscopy October 2018 50 / 72



Time-dependent DF'T

e In adiabatic TD-DFT, the kernel can be calculated directly from
standard DF'T

o if Kxco =0 we get the random-phase approximation (RPA)

e the space of excitations is one particle-hole excitations (as in xq)
but there is mixture and spectral weight transfer

e collective oscillation of electron gas (plasmons) OK

e double and higher particle hole-excitations (complex multiplets)
cannot be reproduced with static kernels

e going beyond the adiabatic approximation is difficult
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X-ray absorption spectra with TD-DFT

u (arb. units)

Schwitalla, Ebert, PRL 80, 4586, 1998
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] A
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FIG. 2. N, s-edge XAS vs x-ray energy for solid Xe from ex-
periment (solid),25 and as calculated using the adiabatic TDLDA

kernel f,.(0) (dashes) and with the independent particle approxi-
mation (dots).

Ankudinov..Rehr, PRB 67, 115120, 2003
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Green’s functions and quasi-particles

@ Green’s functions are the favorite tool of many-body theorists
e GF describe propagation of particles interacting with many others
o Free particles’ properties: bare mass, free dispersion p?/2m ...

@ Under interaction, the particles properties become renormalized.
— different dispersion €(k), effective mass, finite lifetime, ...
the particles become “dressed”, or “quasi-particles”.

@ More generally, quasi-particles are the elementary excitations of
the interacting many-body system, including “dressed”
single-electron states (e.g. polarons) and collective excitations (e.g.
phonons, plasmons, etc)

@ There’s a Green’s functions for each of them ...
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Green’s functions in scattering theory

Free particles Hy = —%V? (EF— Hp)o = 0.
Add potential H = Hy+ V. (E— Hy)y =V

Y= +[E—H| 'Vi=0+GVi=0¢+GT¢
Go = (E — Hp)™! free Green’s Fct. E — E +in = retarded/advanced.
T = scattering matrix. T'¢ = V.
T=V +VGyV + ... Born series.
Full Green’s function G = (F — H)_1
G=(E—Hy—-V)'=(G,'=V)'=Gy+GVGo+...
Plane wave basis Holk) = e;|k), e, = h2k?/2m.

Okk’
E — €L

Go(k,K'; E) = (k|(E — Hy) ' |K) =
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Green’s functions in many-body theory

Retarded 1-part.GF: G(r,r’,t —t') = —i0(t — ¢'){0|[¥(rt), ¥T (r't')]|0)

= Probability amplitude for a particle at rt if one was added at r't/
— 1-part. addition/removal spectrum = inverse/direct photoemission

Non-interacting: Hp =), ekcick = Gok,w) = (w—ex) ! = Gy
Interacting: G =Go+ GG & G l1=G;' -3

Dyson equation. > = self-energy

Free space or crystal G l(k,w) = w — e — Yk (w)

ReXY. — shift of eigenvalue (band). Im3 — finite lifetime 7 = A/ImX..

Describes quasiparticles (Fermi-liquid theory)
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GW approximation

In 1965 Lars Hedin reformulated many-body problem in terms of a
closed set of equations between

G = Green’s function <> X = self-energy <> P = polarization
< W = screened interaction <> I' = vertex function

Neglect I' — “GW approximation”
= very successful for weakly correlated systems, e.g. semi-conductors

Coulomb interaction

2
, e 1
= b
v(r,r") yromm— are
e? 1

W(r,r")

= statically screened
Aregey |1 — 1|

2 —1 1,
Wi(r,r';w) = 46 / dr"' < ‘ ST’T w) dynamically screened
Teq r

F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61 , 237 (1998)
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GW approximation

In practice usually

non-self-consistent version: GoWj 8
DFT — G(), X0 6
3
e tr,r'w) = s,
o(r—r")y + [dr'"v(r,r")xo(r",r';w) ?3
(RPA) =
Wo(r,r’sw) =
[dr"e t(r,r";w)v(r”, ') 0
> = Zf GoWo

G=(Gy' —%)!

P. Kriiger (CU) Spectroscopy
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Bethe-Salpeter Equation (BSE) approach

@ historically: explicit solution of interacting two-particle problem
@ absorption spectra: interaction between excited electron and hole

e compute electron and hole Green’s functions G.(1,1") and
Gp(1,1") using, e.g. GW approximation.

@ clectron-hole GF
Gen(1,2; 1’,2’) =

Ge(1,1)Gr(2,2)) + / Ge(1,3)Gh(2,4)K (3,4;5,6)Gen(5,6;1,2')

e Kernel K = bare exchange and screened Coulomb interaction W
@ describes well excitonic effects

e very accurate for 1-electron — 1-hole interaction, but lacks
multi-electron excitations (e.g. multiplets)
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X-ray absorption spectra with BSE

L] L) L]
Core-hole effects LiF | { Core-hole effects

omjitted #, ! r included, LiF
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+L-S(p)+V(r,)
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Photon Energy, eV Photon Energy, eV (e) o

+L-S(p)+V(r,)
FIG. 2. XAS spectra near F K edge in LiF, NaF, and KF. el
Solid lines, with core-hole effects; dashed lines, without core-
hole effects; points are experimental results [10].

E. L. Shirley, PRL 80, 794 (1998) expt.

idem JESRP 144, 1187 (2005) — SrTiO3 R

Energy (eV)
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Photoelectron spectroscopy

photon source

energy analyser

hv

UHV - Ultra High Vacuum
(p <1077 mbar) J

[wikipedial

Energy, angular and spin destribution of photoexcited electrons
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XPS: X-ray Photoelectron Spectroscopy

Elemental Analysis
s BINDING ENERGIES

Li Be B c N 0 F
82000'
w
=]
= e, | =, :11'2 x1f3 !1.'3
 1000f
(=
2
o
o
0
L A 1 L 1 1 L 1
0 200 400 600

Binding Energy (eV)
Fig. 2.2. XPS spectra of the 1s core levels of Li, Be, B, C, N, O, F

[S. Hiifner, Photoelectron Spectroscopy]

Chemical Shift

ethyl acetone sodium
trifluoroacetate azide
HC
T: o T Ncamo Nat[N "= T*. '
° n,c—c—o—(l, —CF, H:c/
ek +
@ ! / / \
=
T
3
8 Clis) Clis) N(1s)
al bl cl
0 #» F o e

Binding energy (eV)

Fig. 2.5. Chemical shifts for the C 1s levels in ethyl trifluoroacetate (a), and
acetone (b), and the N 1s levels in sodium azide (¢). Chemical shifts can be crudely
related to electronegativity differences: The known [2.8] electronegativity differences
(Ar)are C—H: Az =04,C—-0: Ar = 1.0: C — F: Az = 1.5, which rationalize
the chemical shifts in ethyl trifluoroacetate [2.3]

@ peak position: Electron Spectroscopy for Chemical Analysis ESCA

@ lineshape: electron correlation effects due to core-hole screening
asymmetry, plasmons peak, charge-transfer satellites, multiplets
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XPD: X-ray Photoelectron Diffraction

e angular distribution of XPS signal

@ needs single crystal surface but no long-range k\W §
order of impurities

OO OO
e — local structure probe with chemical 8 8 8 8
sensitivity — impurities/adsorbates 0O 0O
OO OO
@ theory: real-space multiple scattering in 000000000000
finite cluster, e.g. EDAC code
(a) Se 3d (b) Bi 4f (c) o
-~ 165 eV 305 eV 646 eV 846 eV 202 eV 342 eV 600 eV 742 eV '
% ‘ . ; ' . _ ’-“ vdw gap
7] WB U sele M

V. Kuznetsov et al., J. Phys. Soc. Jpn 87, 061005 (2018)]
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ARPES: Angle-Resolved Photoelectron Spectroscopy
3-step model

© photon absorption in bulk E

— vertical band transition

(k,ei)—>(k,€f), € =€ + hw ><
@ propagation to surface with damping < <

(r) = pruc(r)e”/? > e
@ transmission through surface <k <k+G

matching with free wave eX'T

| = k||, k‘ —I— ZmVQ/h2
OO0

0000

OO0O0LOTOOO0OO
OOO0OQOLOOOOO
OCO00O0OYOOO000O0
OO0
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ARPES: Angle-Resolved Photoelectron Spectroscopy

(c)

three-step model

E 4 excitation travel transmission

one-step model

excitation wave matching
into a damped at the surface
final state

into a bulk to the through the
final state surface surface
E e 2 -
hv
EI el /\/\/\f ..........
0

Ekin (b) EI(in
S 1
thr
) _ P/ _
Tq)TvO ______

A. Damascelli, 2004.
Phys. Scr. T109, 61.
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Spin-resolved ARPES — Rashba effect

I I I
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Wave vector k, )

C. R. Ast et al.,
PRL 98, 186807
(2007)
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FIG. 3 (color). (a)—(c) Constant energy contour of the spin
polarization P in x, y, and z direction, respectively, at an energy
of —0.55 eV. The projection in x, y, and z direction is shown in
(a)—(c), respectively. The intensity scale is linear with red and
blue coloring corresponding to positive and negative values,

Calculated 5,,5,,5. at -0.55 eV
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R. Noguchi et al. PRB 2017

System is non-magnetic. Strong spin-orbit coupling and breaking of
inversion symmetry cause large spin-polarization of bands.
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Self-energy(2) — Dynamical mean field theory

Strongly correlated systems: 3d-metal oxides, 5f elements ...
Competition between kinetic energy and local Coulomb repulsion
— band magnetism, metal-insulator transition, high-7,
super-conductivity (7)

Hubbard model

H = Z €Nie + U Z NG| = Z tijC;;ng +U Z UZAR LA
ko 1

ijo i
Gro(w) = [w— € — Spoe(w)] !
Static mean-field theory (e.g. exchange, HFA)
Yiko(w) =U(ng—y) F# fet(w)

Dynamical mean-field theory

Yio(w) = Xo(w)  # fet(k)
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Self-energy(2) — Dynamical mean field theory

In DMFT, Hubbard model (U # 0 on all sites) is mapped on Anderson
impurity model (U # 0 only at one site) — ¥(w) local, k-independent.
Self-consistency: Anderson impurity GF coincide with local Hubbard
(lattice) Green’s function

Gimp(w) = Goo(w) = Y [w + € — Tp(w)] ™!
k

Approximation of DMFT: ¥ (w) = Xjimp(w)

This gives self-consistent equation for ¥;p,,(w)

The difficult part is the solution of the Anderson impurity model.
Various numerical “solvers” exist, with different advantages and
disadvantages.

DMFT has been combined with DFT.

DFMT becomes exact in infinite dimensions [W. Metzner PhD 1999].
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Spectral function

Ag(w) = —%ImGk(w)

non-interacting system T
Ad(w) =0(E — €)

interacting system A (w)
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Ludwig LHU

e Bloch spectral functions

Miinchen

Spin-resolved results for Ni for & || [001]
DMFT

LSDA

spin up

spin down

Courtesy of LMU H. Ebert’s group
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bee-Fe fce-Ni

2 1 T 1 I T 1 2.5 I T 1 T T I
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—>CEE 0.5 - °Z |
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2 2 7
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@ ) s
<-CEE 051 - 4-[:2 i
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® Fe:U=20eV,J=09eV, T =400 K
o Ni: U=30eV,J=09eV, T =400 K

Courtesy of LMU H. Ebert’s group
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Ludwig
Maximilians-

Universitit
Mimnchen

LMU

Fano effect in VB-XPS of ferromagnets

Photocurrent and spin-difference E ;o =600 eV

Experiments - N. Brookes et al., ESRF
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Courtesy of LMU H. Ebert’s group
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That’s all

Thanks for your attention.
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