スピン偏極走査トンネル顕微分光法

Spin-polarized STM

Magnetic probe tip

Sample

Fe
Mn(6)
Mn(7)

40x40 nm²

Fe
Mn(6)
Mn(7)

http://wwwsoc.nii.ac.jp/jps/
実験技術
最近の研究から
スピン偏極走査トンネル顕微分光光
宇宙の暗黒成分は本当に必要か？——長距離・長時間での重力の変——
山田豊和, 溝口 正 499
向山信治 509
量子最速曲線
古池達彦, 奥平陽介, 細谷聡夫 513
励起原子プローブで分子を見る――衝突イオン化における立体異方性の観測――
岸本直樹, 大野公一 518
可視・紫外レーザーによる磁性薄膜で光電子磁気二色性
中川剛志, 横山利彦 522
話題
臨界現象・フラクタル研究の新世紀――SLEの発見――
「論文埋め込み」取材の現場から
香取真理 527
村松 秀 531

About the European Physical Society (EPS)
学会報告 2007年春季大会シンポジウムの報告
F. Wagner 536
JPSJの最近の注目論文から Vol. 76 (2007) No. 4より
領域委員会 541
学界ニュース 本多記念賞: 新庄聡也氏 第9回守田科学研究奨励賞: 市川(進藤)温子氏
高山 549
科学ジャーナリスト賞
高梨弘毅 552
第1回凝縮系科学賞
加藤幹一 553
歴史の小径 日下周一(1915-1947)——もう一人の中間子研究者——
法橋 帳 555
談話室 アテネ会議湯川講演と科学の理想
初めての環太平洋合同物理学会(素粒子理論・実験)を終えて
河本 昇, 住吉孝行 556
新著紹介 望月和子先生を偲んで
鈴木 直 558
物理教育委員会だより
合田正毅 562
会員の声 ■CO₂増加は自然現象だろうか
563
掲示板 ■人事公募 ■学術的会合 ■その他
564
行事予定 会告
572
会 告 ■第62回年次大会の宿泊・交通等の案内
■大会の宿泊手配業務等の業者依頼について(お知らせ) ■第62回年次大会会場における託児室の設置について
■第62回年次大会の事前参加登録・事前講演概要集購入申込のご案内 ■特別シンポジウム開催のお知らせ
■第2回日本物理学会若手奨励賞について ■2007年度日本物理学会科学セミナー「先端光科学が生み出す新しい世界」—聴講者募集—
■2007年5月1日付新入会者
575
本会関係欧文誌予定目次
581

表紙の説明 磁性探針を用いた室温でのスピン偏極走査トンネル顕微鏡 (STM) 検測の様子を示す。上段にモデル図、下段左
図は実験で得た表面の形状像(明るいほど高い位置を示す)、下段右図は同じ場所で得た磁気像を示す(40nm x 40nm)。試料と
してMn/Ni)膜を使用した、表面のMn原子層層とFe原子層層の間でスピンコントラストが確認できる。Mn膜は微分で反
強磁性結合していることが分かった。さらにMn膜上につけたわずか数十個のFe原子スペインが室温において固定され、下地の
Mn膜層との間で同一直線上に強い磁気結合をしていることも分かった。（学習院大学理学部 山田豊和氏提供）

©日本物理学会 2007
本誌の複写希望者 p.578 参照
Reviews
Spin-Polarized Scanning Tunneling Microscopy/Spectroscopy
Toyokazu Yamada and Tadashi Mizoguchi 499

Current Topics
Do We Really Need Dark Components of Our Universe?——Infrared Modification of
Gravity—— Shinji Mukohyama 509
Quantum Brachistochrone Tatsuhiko Koike, Yosuke Okudaira and Akio Hosoya 513
Metastable Atomic Probe Spectroscopy of Molecules——Observation of Stereodynamics in
Collisional Ionization—— Naoki Kishimoto and Koichi Ohno 518
Photoelectron Magnetic Dichroism on Magnetic Thin Films Using Visible and Violet Lasers
Takeshi Nakagawa and Toshihiko Yokoyama 522
SLE: An Epoch in Statistical and Fractal Physics Makoto Katori 527
Scientific Misconduct: From a Science Journalist’s Perspective Shu Muramatsu 531

About the European Physical Society (EPS) F. Wagner 536
Reports on JPS Meeting Division Committee 541
Report on Symposia in the Spring Meeting 2007 Hajime Takayama 549
JPSJ Selected Papers in the Latest Issue

Physics Community News
Honda Memorial Prize; Teruya Shinjo 552
9th Morita Award for Scientific Research (JAUW); Atsuko K. Ichikawa 552
Japanese Association of Science & Technology Journalists Awards 552
Condensed Matter Physics Prize 552

The Path to History
Dr. Shuichi Kusaka (1915–1947) and His Contribution to the Progress of Meson Theory Ken-ichi Kato 553

Forum
Yukawa’s Athens Lecture and Ideals of Science Noboru Hokkyo 555
The First Joint Meeting of Pacific Region Particle Physics Communities Noboru Kawamoto and Takayuki Sumiyoshi 556

Obituary
In Memory of Prof. Kazuko Motizuki Naoshi Suzuki 558
Book Reviews 562
Letters and Comments 563

Notice Board 564

JPS Announcements 575

Published by The Physical Society of Japan
5F Eishin-Kaihatsu Bldg., 5–34–3 Shimbashi, Minato-ku, Tokyo 105–0004, Japan
スピンに依存した固体表面の電子状態を原子スケールの分解能で捉えることができるスピン偏極走査トンネル顕微分光法 (STM/STS) に関して、その原理と基本的な解析法を説明した後、その開発状況の発展経緯を実際に我々が行った層状 Mn(001) 面のスピン偏極 STM/STS の結果を紹介しながら歴史的に概説する。我々は室温でスピン偏極 STS の面内磁気分解能が 0.5 nm に達することを確認した。また Mn(001) 面上の Fe(001) 面の最初の 2 原子層は、1 原子層内で強磁性結合していたが原子層間で同一線にない磁気結合（約 120 度）をしていた。

スピン偏極度を定量的に求めようとするとは、深く感性で探針先端からのトンネル電子のスピン偏極度ベクトルを求めなくてはならないからである。光励起スピン偏極電子を用いてそれを探求している現状にも触れられる。

1. はじめに

光学顕微鏡 (1590, Janssen が発見) の分解能の下限は可視光の波長で決まるので、より波長の短い電子線による電子顕微鏡が開発され、超高圧電子顕微鏡へと発展した。1982年に Binning と Rohrer により全く異なる原理の実験型トネル顕微鏡法 (STM) が発見された。より高い原子スケールの分解能を手軽に実現するには視覚よりも触覚のほうが優れていたと考えると面白い、これは高い探針の先端を試料に非常に接近させ、間々の間を流れるトンネル电流を制御して走査する。その結果、電子は素電荷とともに感応モーメントの自然単位である 1 に近い磁子のスピン磁気モーメントを持っているため、スピン偏極したトンネル电流を感性試料に流し、その表面の局所的な磁気情報を原子スケールの分解能で得ることが可能と考えられる。本解説を通じて、スピン偏極走査トンネル顕微鏡および分光法 (STM/STS) の理解を深めて頂ければ幸いである。

2. スピン偏極STM/STSの原理

最初にスピン偏極 STM の原理を図 1 に示す用に説明する。探針から試料に電子がトンネル効果にともなって流れるととき、スピンの反転は無視できるというがスピン偏極 STM の前提である。非磁性探針を用いた場合、探針の局所電子状態密度 (LDOS) にスピン偏極がないが磁性探針ではスピン偏極している。

図 1(a) にスピン偏極 STM の測定概要図を示す。P_1 は試料の、P_2 は探針のスピン偏極度ベクトルである。平らな試料表面に P_1 と平行・反平行な P_2 を持つ磁区がある。図 1(a) では試料に正電圧がかかったり、負電圧がかかったり、その際、陽極のフェルミ準位から試料の空準位へ電子がトンネル移動する。探針からの電流値を検出し、フィードバック回路を通じてトンネル電流を一定に保つように探針-試料間距離 (z) を圧電素子を用いて制御できる機構となっている。

非磁性探針を用いてこの試料表面を走査した際は、スピン偏極電流は流れないので図 1(a) の点線に沿って (z = h) 走査する。しかし、磁性探針を用いた場合はトンネル電子にスピン偏極が生じる。Slonczewski は 2 つの強磁性体間
トンネル接合のコンダクタンスは両者のスピン偏極度 \(P \) の向きが平行かつ反平行によって \(G_{\parallel} = G_{0}(1+P) \) または \(G_{\perp} = G_{0}(1-P) \) となることを導いている。\(^{10}\) そのため同じトンネル障壁に直接性接合のトンネル電流の値は 2 つ目の磁性電子のスピン偏極度が平行かつ反平行で異なってくる。

STM 側面の観察が同一状態である。このトンネル移動を時性探針と磁性試料のスピン偏極度の形状因子を用いて説明すると、図 1(b) の (c) 中で矢印の大きさは磁極極性的大きさを示す。磁極極性は、探針の実測値の LDOS と試料のバターステップ位置の LDOS の値を比較する。国 1(b) のように \(P_{1} \) と \(P_{2} \) が平行になる場合、spin-up 電子と spin-down 電子のトンネル移動の確率は同じ小さく、国 1(c) のように \(P_{1} \) と \(P_{2} \) が反平行になる場合、spin-up 電子の磁極極性は非常に大きくなり spin-down 電子の磁極極性は小さくなる。結果、\(P_{1} \) と \(P_{2} \) が平行である場合で二つの方向に角変化が生じる。反平行の場合トンネル電流は少なく平行な場合多くなる。

国 1 (a) に戻り、磁性探針でこの試料表面を走査すると、探針-試料間距離 \(z \) は、\(P_{1} \) と \(P_{2} \) が平行な磁極極上では \(z = h_{z} + s_{z} \)、反平行な磁極極上では \(z = h_{z} - s_{z} \) となり、また表面に段差があるように観察される。このスピン偏極電流の変化を高さ情報として捉える手法がスピン偏極 STM である。

これに対して、探針を試料のスピン偏極 LDOS そのものを捉える手法がスピン偏極走査トンネル分光法 (STAF) である。スピン偏極 STM を理解するためにトンネル電流を定量的に捉えてみよう。試料の探針に対するバイアス電圧を \(V \)、トンネル電流を \(I \) とするとき、微分伝導 \(dI/dV \) トンネル極率 \(T \) を用い

\[
dI/dV = T[D_{\parallel}(E_{F})D_{\parallel}(E_{F}+V) + D_{\perp}(E_{F})D_{\perp}(E_{F}+V)] \quad (V > 0)
\]

または

\[
dI/dV = T[D_{\parallel}(E_{F})D_{\perp}(E_{F}) + D_{\perp}(E_{F})D_{\parallel}(E_{F})] \quad (V < 0)
\]

と表わす。ここで \(D_{\parallel}, D_{\perp} \) は探針と試料の LDOS, 1. 1 はスピン 1 またはスピン 2 または上向きまたは下向きを表す。トンネル極率 \(T \) は、探針-試料間距離 \(z \) とバイアス電圧 \(V \) の関数で

\[
T(z, V) = a_{1} \exp[-b_{1}(\Phi + V/2)^{1/2}] + a_{2} \exp[-b_{2}(\Phi - V/2)^{1/2}]
\]

と表わされる。ここで \(\Phi \) は仕事関数、\(a_{1}, a_{2}, b_{1}, b_{2} \) は比例係数である。

式 (1), (2) でわかるように \(dI/dV \) にスピン偏極 LDOS が含まれているので、\(dI/dV \) 遼は画像を変化させることで磁性試料の磁化分布を白黒のコントラストとして直接観察できる。\(dI/dV \) 像を STM 画像と同時に得られれば表面形状と磁化との相関を知る上で大変有効である。

この \(dI/dV \) 像を得る測定方法は 2 つである。

1 つ目は、試料バイアス電圧を変化させトンネル電流中での変調成分だけをノックインアンプを用いて取り出し画像化する手法である。STAF 像を得るためのフィードバックの周波数より高い変調をかけることで常にフィードバックのかけた状態で STAF 像と \(dI/dV \) 像を同時に得ることができる。簡単な概要図図 1(d) に示す。

しかし、\(dI/dV \) 像に表れる青黒のコントラストがスピンに依存するものかどうかは慎重に判断しなくてはならない。なぜなら、試料表面の磁性原子の LDOS は表面形状や隣接する異種原子に大きく影響されるからである。例えば、磁性試料表面の原子ステップでは \(d \) 状態が消減し、吸着した酸素原子によって磁性原子の \(d \) 状態が消滅する。結果、これが \(dI/dV \) 像中では観察されない。これはスピンコントラストではない。

では、この \(dI/dV \) 中のコントラストがスピン偏極 LDOS に依存していると判断し、さらにこのスピンコントラストから定量的スピン偏極 LDOS を得ようとした場合、試料バイアスの変調をかける実験手法では困難なことになる。

\(dI/dV \) には探針-試料間距離 \(z \) が含まれている。図 1 (d) で示したようにフィードバックがかつている測定条件で \(dI/dV \) を測定すると、スピン偏極電流に \(z \) の変化も含まれてしまうため \(dI/dV \) 像のスピンコントラストから定性的議論をすることは難しく、試料のスピン偏極度ベクトル \(P \) を実験的に求めることに \(z \) を固定した条件で \(dI/dV \) を測定してみた。これが 2 つの \(dI/dV \) 像を得る手法である。

まず、フィードバックのかかった状態で適当なバイアス電圧 \(V \) でトンネル電流が一定値になるように \(z \) を調節する。次に、フィードバックの回路を切り、\(V \) を広い範囲で変化させたトンネル電流 \(I \) を測定し数値微分して \(dI/dV \) を得る。これにより各ビクセルごとに \(dI/dV \) 像を同時に得ることができる。図 2 にこの測定の概要を示す。\(P_{1} \) と \(P_{2} \) が反平行な国 1 に示したように \(z = h_{z} - s_{z} \) となり、\(P_{1} \) と \(P_{2} \) が平行な国 1 に示したように \(z = h_{z} + s_{z} \) となる。さらに \(P_{1} \) と \(P_{2} \) が反平行の場合 \(z = h_{z} - s_{z} \) を固定した \(V \) で測定を行った。\(dI/dV \) 像と \(dI/dV \) 像を同時に得ることができた。国 2(a) の \(dI/dV \) 像が \(dI/dV \) 像の同位同体である。この場合 \(P_{1} \) と \(P_{2} \) が平行な場合 \(z = h_{z} - s_{z} \) を固定した \(V \) で測定を行った。\(dI/dV \) 像と \(dI/dV \) 像を同時に得ることができる。
この平行と反平行の場合で得た \(dP/dV \) 曲線を用いて試料のスピン偏極LDOSを得る。\(dP/dV \)に含まれる \(T \) を除く、LDOSのビーグを適当なガウス関数で近似して十分に広い範囲で成立する式 (3) の形をまず求める。その上で観測された \(dP/dV \) を \(T \) で割れば

\[
\frac{dP}{dV} = \frac{D_1}{D_2} + D_2 \cdot D_1
\]

を得る。\(V \geq 0 \) であれば \(D_1(E_F) \) は常数である。

\[
P(E_F) = \frac{D_1(E_F) - D_2(E_F)}{D_1(E_F) + D_2(E_F)}
\]

を表せる。

\[
\frac{dP}{dV} = D_1 + D_2 \cdot D_1
\]

と表すことができる。ここで \(D \) は \(D_1 \) と \(D_2 \) の平均である。

\[
A = \frac{\{dP/dV\}/T}{1 - \{dP/dV\}/T} - \frac{\{dP/dV\}/T}{1 + \{dP/dV\}/T}
\]

を求める。これと \(D \) と \(P \) を用いて \(D_1 \) と \(D_2 \) を分離して求められる。

\[
P_{\text{piro}} = \frac{D_1 - D_2}{D_1 + D_2}
\]

と定義した。我々が行った実験で 5 章で紹介する。

3. スピン偏極STM/STSの発展の経緯

3.1 CrO₂ 強磁性探針によるスピン偏極STM

最初のスピン偏極STMはSTMの発明から 8 年後の1990年にバーゼル大学の Güntherodtの研究室の Wiesendangerらにより報告された。この初めのスピン偏極STMを試みるにあたって彼らは強磁性探針として CrO₂の薄膜をSi(111)に1μm蒸着して用いた。下地のSi探針の形を一層ののち、HF-HNO₃溶液でSiをエッチングして、CrO₂の薄膜を剥離するようにした。CrO₂の薄膜は表面エネルギーで90%の残留磁化を持たせており、この探針は試料面に垂直方向にスピン偏極した電子を供給できる。CrO₂の薄膜に関してはフェルミ準位から2eV下の状態からほぼ100%の偏極した光電子が放出されることが観測されているので、トンネル電子もこれに高い偏極率を持っていると期待された。彼らが試料として取り上げたものは強磁性体心立方のCrである、パルクのCrはスピン密度波で記述される複雑な磁気構造を持つが、STMで観測するのはあくまで表面の原子である、Cr(001)表面に関しては面に垂直に磁気モーメントが隠れており、その向きが1層ごとに反平行な磁気構造となっていることがスピン依存光学分光の実験や計算から推定されていた。実験は図1(a)に示すスピン偏極STMの手法でCr表面のテラス間の段差を測定した。非磁性のW探針を用いたときは面は重心立方Crの格子力を半分、すなわち(001)付近の間隔に相当する0.14 nmであった。これに対し強磁性探針CrO₂を用いたときは0.12 nmと0.16 nmの段差が交互に観測された。

図1(a)に対応されたのは\(h=0.14 \text{ nm}, z_1=h+s=0.16 \text{ nm}, z_2=h-s=0.12 \text{ nm} \)となる。その際強磁性トンネル接触の効果スピン偏極率は\(P = [\exp(A/\phi_s) - 1]/[\exp(A/\phi_s) + 1] \)と表される。実験よりスピン偏極成分s=0.02±0.01 nm、仕事関数\(\phi = 4.0 \pm 0.5 \text{ eV} \)が得られるので\(A = 1 \text{ eV}^{-1/2} \text{ A}^{-1} \)とすれば\(P = 20 \pm 10% \)となる。理論的には\(P \)は両者の状態密度から計算できるバイアス電圧にも依存するが、実験との一致はほぼ満足すべきものとなっている。
CrO₂は薄化中では理論上100%偏極しているが、表面では対称性が崩れるために期待するほどの高偏極度が得られているかが不明であり、その後CrO₂探針は使用されていない。

3.2 光勘起p-GaAs探針によるスピニ偏極STM
1994年にオランダのNijmegen大学のvan Kempenの研究室から全く新しいタイプのスピニ偏極STMの報告が発表された。

p-GaAsに適当な波長（780 nm）の円偏光を照射すると、励起確率の違いにより導帯下の空電子がスピニ極化する。表面にCoを蒸着し真空中でGaAsの導帯の底より下を照射したのち、スピニ偏極した電子ビームを取り出す実験をPieczeが成功させた。

3.3 磁性膜/W探針によるスピニ偏極STM/STS
1990年にスピニ偏極STMの実験成果を最初に報告したWiesendangerではその後ハノルブに新しい研究室を築き、集めた優秀な若手研究者が精力的に活動を開始した。

1998年Bodeらは非磁性Pt/Ir探針を用いてdP/dVをバイアス電圧に交流変調をかけて同期した変化を捉えることによりLDOSを求めた。

この方法でGd(0001)表面でSTSを行う新しいビームをフェルミ準位の上に観測した。続いてW探針にFeを蒸着し探針軸に垂直方向に磁場をかけて磁化した探針を用いてスピニ偏極STS実験を行った。その結果、Fe/W探針を用いた最初のスピニ偏極STSの実験報告である。

試料のGd(0001)を70 Kで+4.3 mTで面内に磁化した場合と-4.3 mTで面外に磁化した場合で、フェルミ準位上から観測したビーコ强度はGdの磁化反転により変化することが分かった。解析・計算の結果、ビーコは相互作用で分裂したminority statesであり、d-likeな表面状態であると判断した。

Fe/W探針によるスピニ偏極度を0.44とし、したがってGd(0001)の表面状態のmajority (minority)部分のスピニ偏極度は0.45と見せた。スピニ偏極度のエネルギー依存性、磁気抵抗についても報告がある。

2000年、Fe/W探針とGd/W探針を用いてW(110)上のMn原子層の2次元反強磁性配列が、16 Kで実空間における原子分解能で観察された。

探針の先端の磁化が試料面に平行なFe/W探針と原子配列の2倍周期のコントラストが得られている。Gd/W探針は試料面に対しけほぼ垂直な磁化方向を持っている、コントラストはFe/W探針と比べ非常に弱いのでMn/W(110)のスピニは面内に向いていると考えられた。

これによりスピニ偏極STMは、原子スケールの磁気分解能を有することが実証された。

これ以降、磁性膜を蒸着したW探針を用いて、超高真空下において試料または低温でのスピニ偏極STM/STSの研究開発が活発に行われている。試料において、2002年にOkunoらがCo(0001)を、2003年にKawagoeらがCr(001)を、同様に我々がMn(001)のスピニ偏極STM/STSの結果を報告している。

2002年にSmithらがMn,Ni(010)のスピニ偏極STMの結果を報告した。

ElmerらはCo/Au/W探針を用いた報告をしている。

この他Cr/W探針、Mn/W探針、Fe,Gd/W探針が報告されていている。

4.2 軸取導入によるスピニ偏極STM
BodeのFe/W探針の場合でもあったが、先端がありめ細いとスピニ偏極STMの実験はうまくいかない。この点をさらに進行して試料に直视的（直徑2 mm）の軸取導入の導入の結果の研究がトンネル電流によってSTMを試みた2003年に成功したのがHalleのMax Plank研究所、KirschnerのグローブのSchlickenとWulfhekelである。

彼らはCoFeSiBアルフィルス酸（厚さ25 μm）から化学エッチングによりリングを作り、これにコイルを巻いて15～30 kHzの交流磁化を反転させ、これに同期したトンネル電流の変化を捉える。リングリングとしてFe whisker(001)面の原子スケールと180度磁化を鮮明に画像化している。

磁化に関しては約4%のスピニコンバートがあり約0.2 mT以下の磁化の変化を試料に平均的な成分の変化を計算結果とはほぼ完全に一致し、また原子層のMnをFe(001)に蒸着し我々の発表した結果と結果を検証し、更にスピニコンバートは0.4%でより、リングの線を再確認した結果で試料面でスケールでは完全でなければなら

4. Fe(001)-whisker单結晶上的Mn(001)エピタキシャル薄膜のスピニ偏極STS
4.1 試料と探針作製
これにより我々のスピニ偏極STM/STS研究において具体的な実験結果を示しつつ述べて行う、本実験はすべて超高真空中、室温で行った。

スピニ偏極STM/STSを行う上で最も重要なものが磁性探針である。このスピニ探針は、先端のスピニ偏極度ベクトルの制御が必要であり作製も容易でなくてはならない。3章で述べたようにこれもコンパスの磁性探針
図3 磁性Fe/W探針の作成・評価。(a) W探針の走査電顕(SEM)像。(b) W探針の電界イオン顕微鏡(FIM)像。(c) W探針のFIM像。いずれも加速电压を5kVで行った。500nmまでは写真で表現した。

最終的には我々は、高圧空気中で2〜10nmのFe薄膜を無電場内に加熱したW探針に蒸着させることで、室温においてても再現性良くスピンサンプルを検出できる探針を作成することを見つかった。(作製された磁性探針は、探針の試料間の物性を改変するために試料へ接続させる。

図3に我々の探針作製・評価の実例を挙げる。W探針は市販のW線から電気的条件により作製する(図3(a))。作製した探針を真空中へ導入し探針先端の原子構造を電界イオン顕微鏡(FIM)を用いて観察した(図3(b))。輝点が単原子に相当する。輝点が何重にも円状に並んでいる。これは(110)の単原子層が積層していることを示す。この結果より探針先端の原子配置モデルを作製した(図3(c))。W探針に蒸着したFe膜を探針軸に垂直に蒸着させたためには、下地のW探針の屈折率半径を大きくすれば良いことが経験的に分かった。径を大きくするために真空圧で2000Kで加熱した。(図3(d)の探針を加熱するとFIM像は図3(d)のように大きく変化した。探針先端に電子が到達する先端から3nmの外側には白い領域が確認できず、探針先端の形状は半球型形状から角張った形状に変化したことが分かった。この探針にFe膜を蒸着して磁性探針とする。探針という特殊な形状でのFe膜の磁化方向を調べるためのFIMの透過電子顕微鏡を用いてFe/W探針の拡散を観察した(図3(e))。白い領域が磁束を示す。200〜2000nmの曲率半径を持つFe/W探針では磁束は探針先端からではなくやや側方に存在する。探針先端の磁化は探針軸に平行でなく垂直であることを意味している。本解説で示すことは、Fe/W探針を用いて得た結果である。

室温で微小磁性体を研究するためには注意する点がある。磁性体の体積が小さくなるとプロッキング温度が下がり室温でスピノンは固定されない。つまり、2000年にWieden-dangerらにより行われた非磁性W上のMn単原子膜の磁気コントラストは室温で検出できない。そこで我々は強磁性体と反強磁性体の中の強度差異を利用して磁性試料Fe(W011)の探針単結晶上に370Kでエビキシャル成長させた反強磁性Mn(W011)薄膜を試料として使用した。

Fe(W011)の探針単結晶は500nm以上の厚い磁性物を持ち、不純物も少なく、薄膜を観察しており確かに微細な小さいのでMn膜の下地として適している。この単結晶を加熱・Ar+スパッタし素不純物量を1%以下にした後、Mn(純度99.999%)を0.3原子層がで370Kで蒸着した。

STM原子像からMn膜はbcc-Fe(W011)と同じ面内原子間距離を持ち、原子間距離は4原子層目に相当し4.2nmであったのでMn膜はbcc構造をz方向に引き伸ばしたbcc構造を持つことが分かった。また、4原子層以上のMn膜にはFe混合原子はなく、表面に複数層が折出し、STSよりもLSDAピーク(〜0.5Vと+0.8V)を持つことが分かった。

4.2 Mn(W011)膜のスピン構造

我々は、4.1章の結果より4原子層以上のMn膜の磁気構造を探るのでに適していると判断し、図4にFe/W探針を用いて流動空気中、室温で作成したスピン構造STM/STSの結果
図4(a)は形状像を示す。表面に8原子層から17原子層が見出されている。STM像では高なほど高さを示す。なお、これら以降STM像とdV/dx像中にしばしば出てくるずれの位置で積層している局所的な原子層の厚さを示す。図4(a)に示され、dV/dx像を図4(b)に示す。図4(a)、(b)はどちらも57×75ピクセル (1.3nm/ビクセル)で測定した。室温測定であり、また200mmまで述べたように図4(a)測定中はフィードバックが入っているが、図4(b)測定中はフィードバックを切っているためノイズは図4(b)の方が大きくなる。非磁性W探針を用いて得たdV/dx像は奇数層と偶数層で全く差を示さなかった。Fe/W探針で得たdV/dx像の奇数層と偶数層は明かに差を示すと白黒コントラストが層間で確認できた。コントラストは2原子層周期で現れている。この振動するコントラストはほとんど4層目から始まっていることも確認した。

図4(b)では奇数層が暗く偶数層が明るく見えるが、これは必ずやなっているわけではない。つまり、Fe/W探針の磁化方向が変われば偶数層が暗く見える場合がある。図4(c)を例に示す。図4(c)は形状像を示す。8層目から12層目が表面へ折出している。探針と試料の磁化方向をθとすると、2章で示したようにスピノレンタルトンネル電流のコントラストは探針と試料のスピノレンタルの内積(P,P,cosθ)に比例しているので、完全に90度で行なうと強弱の違いはなくななるが、常に検出される。我々は70以上のFe/W探針を作製し研究してきた。

4.3 スピン偏極STSの磁気分解能

2000年にWiesendangerらがスピン偏極STSを用いて2次元反強磁性層を16Kで観察できたが、各原子ごとのスピン偏極度ベクトルは求められない。これを実験的に求めるにはスピン偏極STSを用いるしかない。2006年までに低温においてでもスピン偏極STSによる2次元スピン配列を原子レベルで観察することは成功していない。

我々は、Mn膜を用いて事前にも室温でスピン偏極STSの空間磁気分解能の確認を行うことができた。Mn膜表面では0.02nmのスティップとして下地のFeMn原子スティップを確認できる。この位置でMnの厚層と奇数層がつかれる。つまり反強磁性スピノレンタルを作成している。図5(a)は形状像を示す。矢印の間に下地のFe層が現わる。5原子層から8原子層が確認できる。粒子は各位置でのMn原子層の厚さを示す。この位置のdV/dx像を図5(b)に示す。下地のFeスティップに沿って磁気コンマイクタが反転している。コントラストの反転幅を測定するため0.1mm/pixelの分解能で磁区像を測定しライブラリをとると図5(a)の挿入図のように磁気コントラストは約0.5nmで変化していた。これが我々が現在確認することのできるスピン偏極STSの空間磁気分解能である。

4.4 Mn膜上のFe膜のスピン偏極STS

反強磁性層膜上に強磁性層をつかった場合、その界面近くでの強磁性層の層間結合は各原子層ごとにどのように変化するのだろうか。Fe膜をMn膜上にエピタキシャル成長させるスピン偏極STSを用いて観測した。

Fe膜は、下地のMn膜と同じ面内原子間距離(a=0.287nm)を持ち、bcc-Feに比べ大きな原子層間距離(c=0.16nm)を持ち、1層目で12％、2層目で7％の混合Mn膜を
目はFe 2層目と強磁性的に結合していない。各層のスピン間磁極度ベクトルの層間結合角を得るため、図6 (b)のdλ/dP値を用いて、Mn の奇数層と偶数層間のFe膜1層目から得た非対称性A₁と2層目から得た非対称性A₂を求めた。 (b)で最大磁気コントラストを示しているFe 2層目の磁化が探針磁化と平行・反平行であると仮定するとA₁=A₂=P₁=P₂cosθ（90°<θ<180°）となる。よってA₁/A₂=cosθより角度を求めた。Fe 1層目は下地のMn膜と124±4°で結合し、Fe 2層目と116±6°で結合していた。 (1層目と2層目のスピン偏極度が同じであることも (dλ/dP)/V曲線より確認した。)

ところで、本研究で室温で微小な磁性体の観察を試みるためには強磁性体と反強磁性体の間に働く強い反強磁性結合のためである。では、どこまで小さな体積の磁性体を観察できるだろうか。試みとしてMn 膜上にわずかにFe を蒸着した。図6 (c)に示すように偶数層と奇数層のMn テラスが観察されている。これらのスピン方向は反転しているため図6 (d)のdλ/dP値では黒のコントラストとして観察される。このMn 膜上にFe を蒸着し50〜150 個の粒子からなるFe 島を成長させた。プロッキング温度は室温の下であるが、図6 (d)に示すようにFe 島は磁気コントラストを示した。これに、約50個のFe 原子の集まりの磁化ベクトルが室温において固定されていることを示す。

4.5 Mn系反強磁性合金膜のスピン偏極STIM/STS

Mn-貴金属系合金はネール点が高く強磁性膜と交差結
合も大きいため、スピントロニクスデバイス中の反強磁性膜として使用されてきている。そこで我々はスピントロニク
STIM/STS を用いてMnAu 合金膜を研究した。34,35 結果を
図7に示す。Mn膜にAuを蒸着すると安定な(2×2)-
Mn_{18}Au_{60}(001) 合金膜が形成された。 図7 (a)にその原子像を確認した。33 原子間距離は層数の増加とともに減り7層目以上ではbcc-Feと同じになる。1〜4 原子層目のFe 膜は0.3 Vと1.0 VにLDOSピークを持つが、bcc-Feになるとき0.2 VのLDOSピークのみとなる。33

図6(a), (b) 1.5原子層分のFe をMn膜に蒸着した表面でのスピン偏極STS。 (a)は形状像(85×40 nm²)、(b) 1層に得たdλ/dP 像。 Fe蒸着前 (a)中の白点
図4においてMn 偶数層、左側に奇数層が示されている。図3各位置でのFeの原子層厚を示す。矢印1は実験により磁化分布を示す。 (b) 中の矢印は
図3の磁化方向を示す。 (c), (d) はずれCaをMn膜に蒸着した際に形状像(40×40 nm²)とdλ/dP像である。小さな島は約50個のFe原子からなる。
5. スピン偏極度定量的測定への挑戦

5.1 Mn 膜のスピン偏極度測定

これまで (dI/dV) 画像を示して話を進めてきたが実際に行われる (dI/dV) 曲線を図 8(a), (b) に示す。2 章で述べたように (dI/dV) には z 依存性が含まれている。dI/dV 曲線を行う前にフィードバックがなかった状態で指探針-試料間距離 (z) を変えるが、その条件を変え測定を行ってみた。同じ Mn 試料の偶数層と奇数層で (dI/dV) 曲線を測定した。

図 8(a) は試料バイアス Vg = -0.5 V, I = 0.5 nA, 図 8(b) は Vg = +0.5 V, I = 0.5 nA の条件で各々を決めた。

Mn 膜の Vg = -0.5 V, Vg = +0.5 V でスピン偏極度が反転しているため図 8(a) と (b) では z に差が生じ (dI/dV) 曲線でスピンコントラストの現れるバイアス範囲が大きく異なっている。図 8(a) で主に正バイアス側に、(b) では負バイアス側に差が生じた。z 依存性を除くため図 8(c) に示すように Mn の偶数層 (灰色) と奇数層 (黒色) で得た (dI/dV) 曲線 (solid lines) をフィッティングより得た T (dashed lines) で規格化し、(dI/dV)/T 曲線を得た (dotted lines)。結果 4 層以上の Mn 層は -0.5 V と +0.8 V にスピン分解した LDOS ビークを持つことが分かった。20, 24 パンダ構造計算を行い、このスピン分解
Mn 試料では逆に奇数層と偶数層で試料の磁化が反転している。

\[D_{\text{Max}} = \frac{1}{D} \left(1 - \frac{A}{P_i}\right) \left[\left(\frac{df}{dV}\right)/T\right]_{\text{ave}} \]

\[D_{\text{Min}} = \frac{1}{D} \left(1 + \frac{A}{P_i}\right) \left[\left(\frac{df}{dV}\right)/T\right]_{\text{ave}} \]

式 (9)

\([df/dV)/T]_{\text{ave}} は、\[df/dV)/T\]分布の平均である。これを用いて実験的に Mn 表面のスピン分

解 LDOS を得た（図 8(e)）。図 8(f) にバンド構造計算によ

り得た Mn 表面のスピン分解放 LDOS を示す。3 つのビックがあ

り、フェルミ準位に近いほうから表面状態 (S), 表面共鳴

(SR), パルク状態 (B) である。比較よりスピン偏極 STS で

は表面状態・表面共鳴を検出できるが、パルク状態は検出

しないことが確認できた。また、実験より求めたスピン分

解 LDOS の形状が探針のスピン偏極度に依存したのことを

計算を比較することにより、使用した Fe/W 磁性探針の偏

極度は 18±5% と求まった。この探針偏極度で実験より

得られた \(A_{\text{normal}}\) と \(A_{\text{in}}\) の差が \(\pm 0.8\)

V のスピン分解放 LDOS ビーク位置での偏極度は 60±16% と

求まった。\(^{30}\)

5.2 探針スピン偏極度ベクトルのその場測定

スピン偏極 STS/STS で得られたスピンコントラストは

\(P_i\) と \(P_s\) の内積に依存するため（2 章）、\(P_s\) を知らなければ磁

性探針から出るトンネル電子のスピン偏極度 \(P_s\) の

方向と大きさを知らなければならず。

1.3 章では \(P_i\) を制御できなかったので、我々は同一試料の

同一場所を数１０本の Fe/W 探針を切り替えいずれか

を最コントラストに近い場合を探針と試料の磁化ベクトー

ルが平行または反平行であると判定した。これは大変忍耐

のいる実験である。そこで、我々は各磁性探針におけるスピン

特性のその場測定を行うため GaAs からのスピン偏極電

子線を磁性探針へ注入して探針先端のスピン偏極度を直接求

める手法の開発を行ってきた。

GaAs へ右 - 左回り円偏光を照射すると ±50% スピン偏

極した電子を伝導帯へ励起できる。この励起電子を探針 -

試料間距離を固定して探針へトネル遮蔽させる \(\text{探}

针先端のスピン偏極度ベクトルを直接測定できる。非磁性

W 探針では右回りと左回り円偏光を照射して分光を測定し

た際の差がなかったが、磁性 Fe/W 探針では差が見られた。\(^{29}\)

その \(df/dV\) 曲線を図 9(a) に示す。探針 - 試料間距離が一定

である場合非対称性は式 (8) となる。\(P_{s} = (P_{s}, P_{s})\), \(P_{s} = \)

0.5 とし、Fe/W 探針のスピン偏極度ベクトルの 3 分成を

求めるためには円偏光を 3 方向から入射すればよい。この

ため、真空槽内に小さな鏡 \((\theta_1, \phi_1), (\theta_2, \phi_2), (\theta_3, \phi_3)\)

の位置にセットした。\(\theta, \phi\) は図 9(b) に定義する。慣性円偏光

を鏡へ入射し反射光が円偏光であるようにして GaAs へ照

射した。よって実験で得られる 3 つの非対称性は

\[
\begin{pmatrix}
A_1 \\
A_2 \\
A_3 \\
\end{pmatrix} = \begin{pmatrix}
\sin \theta_1 \cos \phi_1 & \sin \phi_1 & \cos \theta_1 \\
\sin \theta_2 \cos \phi_2 & \sin \phi_2 & \cos \theta_2 \\
\sin \theta_3 \cos \phi_3 & \sin \phi_3 & \cos \theta_3 \\
\end{pmatrix} \begin{pmatrix}
P_1 \\
P_2 \\
P_3 \\
\end{pmatrix}
\]

（10）

となる。実験より得た \(A_1, A_2, A_3\) を式 (10) に代入し \(P_1\), \(P_2\), \(P_3\) を得ることができる。現在データを蓄積し探針に共通す

るスピン偏極ベクトルが得られるかどうか実験を続けてい

る。トンネル光電子の偏極ベクトルは GaAs 中の屈折

光ではなくて、表面に入射する光の方向に決まるようなで

る。このあたりも光電子放出の基礎実験として興味あると

ところである。

6. おわりに

理論的にはハートリー-フォック近似以来、電子状態はス

ピン状態を含めて記述されている。近年の理論計算の進

歩はめざましく、信頼に足る第一原理計算の結果も蓄積さ

られてきた。しかし任意に依存した電子状態を求める実

験はスピン状態を分離しない実験に比べると格段に難しい。

スピンに依存した固有表面の電子状態を原子スケールの分

解能で探ることができるスピン偏極走査トンネル顕微分光

法（STM/STS）はさきわめて有効な実験手法である。

本論文ではその原理と基本的な解析

法を解説した。また実際には我々が最近

行った Fe(001) 上にエビタキシャル成長させた Mn(001) 膜に対する実験と

解析結果を報告し、スピン偏極

STM/STS の実験からスピン依存局所

状態密度を求める過程と結果を具体的

に紹介した。また宜室でスピン偏極

STS の面内磁気分解能が 0.5 nm に達す

ることが確認できた。

今後の分野は注目を集めると思わ

れるが、スピンに依存した物理を見

きかけに、実験を司念に行わなければ

信頼に足る成果は望めないことを探

りにしめて感じている。
Spin-Polarized Scanning Tunneling Microscopy/Spectroscopy

Toyokazu Yamada and Tadashi Mizoguchi

Abstract: A historical introduction of the development of spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS) is first made. Then the working principle of spin-polarized STM/STS is discussed paying special attention to the obtainment of the sample spin-polarization. We discuss the case of bcMn epitaxial films grown on Fe(001) whisker. The bcMn(001) layers couple antiferromagnetically with the adjacent layers. The highest lateral magnetic resolution obtained at room temperature by spin-polarized STS is ~0.5 nm. Also, non-collinear magnetic coupling between Fe layers on the Mn films was found. Performing a detailed analysis of the spin-polarized STS, the Mn(001) surface has a 60±16% polarization. Furthermore, we introduce in-situ measurement of a tip polarization vector with photo-excited spin-polarized electrons.