

Three-Dimensional Dirac Electrons in Antiperovskite Ca_3PbO

Y. Obata,^{1,2*} R. Yukawa,³ K. Horiba,³ H. Kumigashira,³ C. Takada,¹ W. Yi,¹ Y. Kohama,⁴ Y. Toda,⁵ S. Matsuishi,⁵ H. Hosono,^{2,5} and K. Fujita¹

¹*Department of Material Chemistry, Kyoto University, Japan*

²*Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Japan*

³*Photon Factory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Japan*

⁴*ISSP, the University of Tokyo, Japan*

⁵*Materials Research Center for Element Strategy, Tokyo Institute of Technology, Japan*

*obata.yukiko.7w@kyoto-u.ac.jp

Dirac materials have emerged as a prominent topic in condensed matter physics. They exhibit linear energy-momentum dispersion at finite points or along curves in k space. In the past decade, cubic antiperovskites have been suggested as potential source of such novel topological phases of matter as three-dimensional (3D) massive Dirac electrons, topological crystalline insulators (TCI), topological nodal line semimetals, and topological superconductors. The prototypical example is Ca_3PbO which was theoretically predicted to host 3D gapped Dirac electrons [1–3]. The Dirac states result from a band inversion of the Ca 3d and Pb 6p bands at the Γ point. To verify these predictions, we have conducted soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) and experimentally confirmed the presence of the Dirac-like dispersion along the Γ –X direction in the 3D Brillouin zone. Furthermore, chemical substitution of Bi for Pb effectively tuned the Fermi level of Ca_3PbO without fundamentally changing its Dirac-like band structure [4]. In addition to the spectroscopic studies, Shubnikov-de Haas (SdH) oscillation measurements on Bi-doped Ca_3PbO reveal the distinct features of Dirac fermions: linear magnetoresistance, light effective mass, and a nontrivial Berry phase shift [5]. Our studies demonstrate that the cubic antiperovskite family provides a promising platform for the exploration of 3D Dirac fermion systems. Finally, we will shortly report our current investigation of novel Dirac materials in a cubic antiperovskite nitride system.

References:

- [1] T. Kariyado and M. Ogata, *J. Phys. Soc. Jpn.* **81**, 064701 (2012).
- [2] T. H. Hsieh *et al.*, *Phys. Rev. B* **90**, 081112(R) (2014).
- [3] C.-K. Chiu *et al.*, *Phys. Rev. B* **95**, 035151 (2017).
- [4] Y. Obata *et al.*, *Phys. Rev. B* **96**, 155109 (2017).
- [5] Y. Obata *et al.*, *Phys. Rev. B* **99**, 115133 (2019).