

XXZ anisotropy in $J_{\text{eff}}=1/2$ triangular lattice antiferromagnets: a microscopic map from trigonal distortion

R. Ono^{1*}

¹*IAAdvanced Science Research Center, Japan Atomic Energy Agency, Japan*

*ono.ryota@jaea.go.jp

Pseudospin-1/2 triangular-lattice antiferromagnets (TLAFs) are a central platform for studying geometrical frustration and quantum magnetism. A widely used minimal description is the antiferromagnetic XXZ model, which can be realized by spin-orbit-entangled $J_{\text{eff}} = 1/2$ Kramers doublets, as in high-spin Co^{2+} compounds [1]. Of particular current interest is the possible emergence of a quantum spin-supersolid phase [2, 3], whose stability is governed primarily by the exchange anisotropy $\alpha = J^{zz}/J^{\perp}$. In this talk, I show that, in an axial (trigonal) limit of the $J_{\text{eff}} = 1/2$ Kramers doublet with an (approximately) isotropic bare exchange in the physical-spin basis, α is bounded within the universal range $1/4 \leq \alpha \leq \infty$. Thereby, excluding an ideal XY limit ($\alpha = 0$), while still allowing the Ising limit ($\alpha = \infty$). I then apply this framework to prototypical Co-based pseudospin-1/2 XXZ TLAFs $\text{Na}_2\text{BaCo}(\text{PO}_4)_2$ and $\text{K}_2\text{Co}(\text{SeO}_3)_2$. This analysis reveals the microscopic origin of experimentally observed huge difference of α between these two systems [4, 5]. Furthermore, our first-principles-based modelling shows that alkaline-metal substitution systematically modifies the trigonal crystal field, providing a direct chemical route to tune α . I will also briefly comment on possible magnetoelectric effects in these compounds.

References

- [1] H. Liu and G. Khaliullin, Phys. Rev. B **97**, 014407 (2018).
- [2] S. Wessel and M. Troyer, Phys. Rev. Lett. **95**, 127205 (2005).
- [3] R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D. N. Sheng, and L. Balents, Phys. Rev. Lett. **95**, 127207 (2005).
- [4] Y. Gao, Y.-C. Fan, H. Li, F. Yang, X.-T. Zeng, X.-L. Sheng, R. Zhong, Y. Qi, Y. Wan, and W. Li, Spin, npj Quantum Materials **7**, **89** (2022).
- [5] M. Zhu, L. M. Chinellato, V. Romerio, N. Murai, S. Ohira-Kawamura, C. Balz, Z. Yan, S. Gvasaliya, Y. Kato, C. D. Batista, and A. Zheludev, npj Quantum Materials **10**, **74** (2025).