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The Kirkwood-Buff theory is a cornerstone of statistical mechanics of liquids and solutions. It relates volume
integrals over the radial distribution function, so-called Kirkwood-Buff integrals (KBIs), to particle number
fluctuations and thereby to various macroscopic thermodynamic quantities such as the isothermal compress-
ibility and partial molar volumes. Recently, the field has seen a strong revival with breakthroughs in the
numerical computation of KBIs and applications to complex systems such as bio-molecules. One of the main
emergent results is the possibility to use the finite volume KBIs as a tool to access finite volume thermody-
namic quantities. The purpose of this perspective is to shed new light on the latest developments and discuss
future avenues.
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I. INTRODUCTION

In the context of the statistical description of liq-
uid solutions, Kirkwood and Buff (KB) proposed in the
fifties1 a rigorous statistical approach that makes the
link between structure, thermodynamics, and density
fluctuations2,3. In this context, we can say that the
structure provides access to thermodynamic properties
and the inverse is also true (thermodynamics provides
insight in structure), the key function to operate being
the so-called Kirkwood-Buff integral (KBI). KB theory is
an exact theory, valid for any isotropic solution in ther-
modynamic equilibrium, and it is widely used in physical
chemistry and biochemistry3. Until recently, however, for
systems of great structural complexity and/or long-range
correlations, KBIs could not be obtained accurately from
molecular simulation because of severe finite-size effects.
Efficient solutions for this have been proposed in the
past few years4–11, and KB theories has been applied
to biological molecules12, force field development13, mul-
ticomponent fluids14 and oligomeric blends15 and ionic
solutions16. There are numerous other recent applica-
tions of KB theory, including hydration shell17, self-
aggregation18 and protein stability19–21. Our list of ap-
plications is not exhaustive, and we have focused on ap-
plications related to the concept of finite volume KB the-
ory, exposed in the first part of this article. Since this

a)Electronic mail: jmsimon@u-bourgogne.fr

concept has considerably enlarged the scope of the KB
theory, it is expected to stimulate more interesting appli-
cations in the future.

As below the thermodynamic limit the KB theory is ex-
act, it opens the question of the link with thermodynam-
ics and beyond, with the type of thermodynamics that
applies to small systems. Evidence have now accumu-
lated to support the idea of a scaling method, called the
Small System Method (SSM), first proposed by Schnell
et al.7 and extended by Bedeaux et al.22, based on the
thermodynamics of small systems by Hill23,24.

The present work is motivated by our interest in opti-
mising the computation of KBIs and improving the phys-
ical understanding at different length scales. The per-
spective is divided into three parts: the first one presents
KBIs and the methods to calculate them, the second
is dedicated to the thermodynamic interpretation of the
size-dependence of the KBIs, and the last one is focussed
on new applications and perspectives.

II. FINITE VOLUME KIRKWOOD-BUFF INTEGRALS

After some general considerations on KBIs, the focus is
put on the methodology to compute them from molecular
simulation while knowing the radial distribution function
(RDF). In the last part, recent developments on the cal-
culation of the RDF is added.
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A. Basics

As first realized by Kirkwood and Buff1, particle num-
ber fluctuations can be computed from volume integrals
over the pair-distribution function (PDF), this defines
the so-called Kirkwood-Buff integral:

GV
ab =

V

〈Na〉〈Nb〉

∫

V

dr1

∫

V

dr2ρa(r1)ρb(r2) (gab(r1, r2)− 1)

= V
〈NaNb〉 − 〈Na〉〈Nb〉

〈Na〉〈Nb〉
− δab

ρa
(1)

where a, b . . . denote the particle species, Ni is the num-
ber of i-particles in volume V , ρi(r) is the ensemble
averaged local density of i-particles at position r, and
ρi = 〈Ni〉/V is the average density in V . The gab(r1, r2)
is the PDF and 〈. . . 〉 denotes ensemble average. By def-
inition of gab, Eq. (1) holds in any system.
We consider an open subvolume V of an infinite

isotropic fluid. Then ρi(r) is constant and gab depends
only on the particle distance r12 = |r1 − r2|. In this sit-
uation, the PDF has no privileged orientation and it re-
duces to the radial distribution function. We can rewrite
Eq. (1) as

GV
ab ≡

1

V

∫

V

dr1

∫

V

dr2(gab(r12)− 1) (2)

In the limit V → ∞, we have

G∞
ab =

∫ ∞

0

(gab(r)− 1)4πr2dr (3)

which is the expression introduced by Kirkwood and
Buff1. In practice, the integral of Eq. (3) must be trun-
cated at some upper bound L,

G̃L
ab =

∫ L

0

(gab(r)− 1)4πr2dr (4)

which is called the ”running KBI” (RKBI). In the past,
the RKBI was used in most calculations3, but conver-
gence to the thermodynamic limit (TL) is difficult for two
reasons. First, the RDF is often obtained from molecu-
lar simulations in closed systems. This canonical RDF
does not tend exactly to 1 for large r, but to 1 − c/V0,
where c is a constant and V0 is the simulation box size3.
This small, but systematic difference makes the KBIs di-
verge as L3. Second, even with an exact, grand-canonical
RDF, the RKBI strongly oscillates as function of L, and
so extrapolation to L → ∞ can be very difficult.

B. Practical computation of KBIs

1. RDF calculation

In molecular simulation software, pair distribution
functions are nearly always computed by ”counting” the

number of molecules at distances between r and r +∆r
from a central molecule25. Although this is correct, it
is not efficient as the number of molecules per bin can
be small, resulting in poor statistics and noisy radial
distribution functions, especially for small bin sizes ∆r.
Recently, Borgis and co-workers have derived a much
more efficient way of obtaining RDFs from molecular dy-
namics simulations26 using the forces between particles
/ molecules.

gab(r) =
V

4πNaNbkBT

〈

∑

i∈a<j∈b

H(r − rij) (Fi − Fj) rij
r3ij

〉

(5)

where T and kB are respectively the temperature and the
Boltzmann constant. In this equation, Fi is the net force
of particle i and H(r) is the step function (i.e. H(r) = 1
if r > 0 and H(r) = 0 otherwise).
In Refs.26,27 it is shown that RDFs obtained using

Eq. (5) are much smoother that those by the traditional
”counting” approach. For the computation of Kirkwood-
Buff integrals, having a smooth RDF is less relevant as
integrals are usually much smoother than the integrand,
as fluctuations in the integrand are integrated out28.

2. From closed to open ensembles

The RDF is usually obtained from molecular simula-
tions in the canonical ensemble, i.e. with constant num-
ber of particles and constant volume. As mentioned
above, the canonical RDF has a systematic finite-size
error. As a consequence, RDFs obtained from canoni-
cal ensemble simulations must be corrected before being
used in KBI calculations. Without correction, KBIs di-
verge as L3 = V . Several correction schemes have been
proposed in the literature. A simple method consists in
calculating gab(r) for two different box sizes V0 and ex-
trapolating to V0 → ∞ according to the 1/V0 dependence
of the error3,9. The drawback of this method is that
two independent simulations must be performed and the
choice of the two system sizes may affect the accuracy of
the result. A more elegant method was proposed by Gan-
guly and van der Vegt29, which renormalizes the RDF
by correcting the particle densities in the finite reservoir.
The corrected RDF is

gab(r) = g̃ab(r)
Nb(1− V/V0)

Nb(1− V/V0)−∆Nab(r)− δab
(6)

where g̃ab(r) is the canonical RDF obtained with a simu-
lation box of volume V0 containing Ni particles of type i
and V = 4πr3/3. ∆Nab(L) is the excess of particles b in
a sphere of radius L around a particle a, given by

∆Nab(L) =

∫ L

0

dr4πr2[g̃ab(r)− 1] (7)
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Ben-Naim3 has proposed a simpler, r-independent cor-
rection given by

g∞ab(r) = g̃ab(r) +
1

V0

(

δab
ρa

+G∞
ab

)

(8)

Dawass et al.30, have compared the various schemes and
found that the correction of Eq. (6) by Ganguly and van
der Vegt29 generally leads to the best results for KBIs.
Before ending this section it is worth to mention the ex-
tension method of the RDFs to large scales that Verlet
proposed in 196831. Despite the complexity of its numeri-
cal application it was successfully used to obtain accurate
KBIs, see Ref.32.

3. Convergence of the KBI to the thermodynamic limit

The second finite-size problem of KBIs is that, even
with the exact RDF, the RKBI, Eq. (4), converges badly
with size L, because the oscillations of g(r) become
strongly amplified by the r2 factor in the integrand. This
problem can be avoided by using finite volume KBI, de-
veloped by the present authors9,30,33,34. First, we note
that for V < ∞, GV

ab in Eq. (2) cannot be written in
terms of a RKBI (4). Indeed, the RKBI does not give
the particle number fluctuations, but the excess particle
number ∆Nab(L), see Eq. (7), which strongly oscillates
with L because of the shell structure in the fluid. In
sharp contrast, the finite volume KBI in Eq. (2) oscil-
lates only weakly and converges smoothly for L → ∞.
While Eq. (2) is exact, it is numerically cumbersome,
since it involves a double volume integral. Krüger and
coworkers9,30,33–35 have shown that this six-dimensional
integral can be reduced to the simple radial integral as

GV
ab =

∫ L

0

(gab(r)− 1)w(r)dr (9)

Here

w(r) =
1

V

∫

V

dr1

∫

V

dr2δ(r − |r1 − r2|) (10)

is a purely geometrical weight-function which is zero for
r > Lmax, where Lmax is the largest distance in V . An-
alytic expressions of w(r) have been derived for hyper-
spheres9,36,37 and cuboids34. For volumes of arbitrary
shape, w(r) can easily be obtained by numerical integra-
tion33. For a sphere of diameter L, we have9

w(r, L) = 4πr2(1− 3x/2 + x3/2) , x ≡ r/L (11)

The finite volume KBI, GV
ab in Eq. (9), converges to G∞

ab
as 1/L, where L is the linear dimension of the volume V ,
conveniently defined as L = V/(6A), where A is the sur-
face area of V . For large L, we can expand in 1/L as

GV
ab ≡ Gab(L) = G∞

ab + F∞
ab /L+O(L−2) (12)

where

F∞
ab = −3

2

∫ ∞

0

r(gab(r)− 1)4πr2dr (13)

is an exact expression of the surface term which holds for
volumes of any shape34.
By plotting Gab(L) as a function of 1/L, Eq. 12, one

can obtain the thermodynamic limit G∞
ab by linear re-

gression. From the knowledge of the size-dependence of
thermodynamic quantities the thermodynamic limit can
be found by extrapolation, which is linear here. This is
what we called Small System Method7,8 (SSM). We will
come back to this approach in more details in the next
Section. An alternative scaling approach was proposed
by Cortes-Huerto et al.10. It is based on an approximate
expression of the finite size KBI which depends both on
the subdivision volume V and the simulation box volume
V0. From this, the infinite volume KBI G∞

ab is obtained
by non-linear regression. The finite size error of the RDF
is corrected using Eq. 8.
The SSM is illustrated for a Lennard-Jones (LJ) liq-

uid system in Fig. 1 (a) where the quantity GV (L)/σ3 is
plotted as a function of σ/L using different expressions
for KBI, the RKBI Eq. (4), the exact finite volume KBI,
Eq. (9), and the fluctuation expression from Eq. (1) (for
spherical volumes). σ is the diameter of the LJ parti-
cle. The results show excellent agreement between the
fluctuation approach and Eq. (9), despite small noise for
fluctuations. The trends are linear in the range 0.25 and
0.45 (for σ/L) where G∞ can be linearly extrapolated us-
ing Eq. (13) to ca. −1.2. Below σ/L = 0.25, the trend is
not linear due to small size effects of the simulation box,
this point has been discussed previously, see Ref.35. The
RKBI shows large oscillation, that attenuates with length
but not enough to obtain reliable results, i.e. a constant
plateau. The statistical efficiency can be improved us-
ing larger simulations boxes but the results clearly show
that the SSM is accurate enough to obtain reliable re-
sults while the usual approaches based on RKBI, find
here their limit.

An equivalent method, consists of plotting L×Gab(L)
as a function of L and extracting the linear slope at
large L, which tends to G∞

ab. This is presented on Fig.
1 (b) using the same set of data as in (a). Here we find
G∞

ab ≈ −1.2 in agreement with the result from Fig. 1 (a).
This type of representation reduces the statistical noise
and enlarges the useful linear range for the regressions
both for the KBI and RKBI. The two linear procedures
are simple and safe8,30. However, it should be pointed
that the choice of the linear regime for the interval of re-
gression may affect the accuracy of the extrapolation30.

Alternatively, one can use one of the extrapolation ex-
pressions that have been proposed for G∞

ab
9,34. These are

of the form

G∞
ab ≈

∫ ∞

0

[g(r)− 1]uk(r)dr (14)

with some finite-range weight-function uk(r), in which k
is the level of approximation. The most simple form is
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FIG. 1. For a Lennard-Jones (LJ) system, the functions (a)
GV (upper panel) and (b) L×GV (lower panel), using Eq. (4),
the RKBI and Eq. (9), the exact KBI, respectively as a func-
tion of the reduced values of L. These values are compared
with the ones calculated from the fluctuation expression, the
r.h.s. of Eq. (1). The sets of data are the same in the two
figures. The system was composed of 10000 argon particles,
the reduced density, i.e. number of molecules per σ3 where σ
is the LJ parameter, was 0.551 and the reduced temperature,
i.e. temperature divided by ǫ/kB where ǫ and kB are the other
LJ parameter and the Boltzmann constant respectively, was
1.40. A cut-off radius of 2.5σ was used for the LJ potential.

u0(r) = 4πr2 which corresponds to the “running” KBI
used in most of the literature before 2013. It is ob-
tained by simply truncating the infinite KBI at r = L
and it is identical to G̃V

ab in Eq. (4) for a sphere. How-

ever, as explained above, G̃V
ab is not related to num-

ber fluctuations in V . In practice, the running KBI
with u0(r) converges poorly with L, because it hugely
amplifies the oscillations of gab(r). A better choice is
u1(r) = 4πr2[1− (r/L)3] which was obtained by a Taylor
expansion in 1/L of the exact KBI for a finite sphere,
Eqs (9, 11)9. Using Eq. (14) with u1(r) affords fast and
stable convergence of the KBI9. Another extrapolation
was developed based on Eq. (12) and a similar expansion
applied to F∞

ab
34. The corresponding weight-function

is u2(r, L) = 4πr2[1 + (−23x3 + 6x4 + 9x5)/8], where
x = r/L. This extrapolation was found to converge even
faster than u1(r) in tests with a model RDF34. In ap-
plications with realistic, material specific RDFs38, both
u1(r) and u2(r) have been found to be equally useful and
far superior to u0(r). These new approximations for the
infinite KBI, obtained by extrapolating the exact finite
volume KBI – either numerically or using the functions
u1 and u2 – have led to a considerable improvement of

the reliability and accuracy of KBI calculations in recent
years14,30,39.

III. THERMODYNAMIC FORMULATION OF THE

SIZE-DEPENDENCE OF KBI AND FLUCTUATIONS

One of the main interest in KBIs and fluctuations is
to relate them to thermodynamic quantities1–3. This has
been exploited at the thermodynamic limit where G∞

ab
is known. The KBI, like fluctuations, has a statistical
basis, which is the same regardless of the size and shape
of the volume, area, or the three-phase contact line of
the system. This provides a direct path between any
small system property and its KBI. This procedure has
not yet been exploited in any systematic manner. We
explain this possibility to find thermodynamic properties
for small systems and point at some perspectives. The
material in this section is a modified version of Ref.22.
The finite volume KBI is provided by Eq. (1). It is

first obtained from the density fluctuations as function
of T, V , the chemical potentials of all the species µ, and
the size and the shape of the volume V . In the grand-
canonical ensemble, we can rewrite Eq. (1):

GV
ab(T, V,µ, shape) = V

〈NaNb〉 − 〈Na〉 〈Nb〉
〈Na〉 〈Nb〉

− δab
ρGC
a
(15)

where ρGC
a (T, V,µ, shape) = NGC

a (T, V,µ, shape)/V ≡
〈Na〉 /V is the average number density of component a.
The brackets 〈. . .〉 denote the ensemble average in the
grand-canonical ensemble. Eq. (15), as well as its formu-
lation for the grand-canonical ensemble, is the same for
small and large volumes. Eq. (15) and further equations
in this section are completely general. In particular, they
do not include any assumptions about the pair correla-
tion function. In this section, we restrict most of the
discussion to systems controlled in the grand-canonical
ensemble.
Following Kirkwood and Buff, we introduce an auxil-

iary matrix, which is equal to the particle number cor-
relation matrix BGC

ab . In the grand-canonical ensemble,
the matrix elements are defined by

BGC
ab (T, V,µ, shape) ≡ 1

V
[〈NaNb〉 − 〈Na〉 〈Nb〉]

= ρGC
a ρGC

b GV
ab(T, V,µ, shape) + ρGC

a δab (16)

This results in

BGC
ab (T, V,µ, shape) =

kBT

V

∂〈Na〉
∂µb

= kBT
∂ρGC

a

∂µb
(17)

All elements BGC
ab are functions of (T, V,µ) and system

shape. Both matrices GV
ab and BGC

ab are symmetric. The
equation applies to small systems, also those which are
not isotropic.
Kirkwood and Buff1 next defined the auxiliary matrix

AGC
ab . For environmental variables

(

T, V,NGC
)

and given
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shape, we obtain:

AGC
ab

(

T, V,NGC, shape
)

= βV

(

∂µb

∂NGC
a

)

T,V,NGC
a

= β

(

∂µb

∂ρGC
a

)

T,V,ρGC
a

(18)

where

N
GC
a ≡ (N1, . . . , Na−1, Na+1, . . . , Nk)

GC

≡ V (ρ1, . . . , ρa−1, ρa+1, . . . , ρk)
GC ≡ V ρGC

a (19)

The A and B matrices are each other’s inverse, meaning
that:

∑

b

BGC
ab AGC

bk = δak (20)

From the symmetry of BGC, we conclude that also A
GC

is symmetric. The so-called matrix of thermodynamic
factors ΓGC can now be obtained from A

GC by

ΓGC
ab

(

T, V,NGC, shape
)

≡ ρGC
a AGC

ab

(

T, V,NGC, shape
)

= βNGC
a

(

∂µb

∂NGC
a

)

T,V,NGC
a

= βρGC
a

(

∂µb

∂ρGC
a

)

T,V,ρGC
a

(21)

We have thus obtained the thermodynamic factors as
functions of (T, V,NGC, shape) in a few steps directly
from particle fluctuations. Other thermodynamic prop-
erties can be found likewise3,22. The formulas above re-
duce for a pure component to3

B11 = ρ21G11 + ρ1 (22)

κT =
1 + ρ1G11

kBTρ1
(23)

(

∂µ1

∂N1

)

T,V

=
kBTN1

1 + ρ1G11
(24)

Here κT is the isothermal compressibility and ρ1 is the
density of the component. Ben-Naim3 provides these re-
lations for the thermodynamic limit only, but it is im-
portant to note that these relations are also valid for any
finite volume.
For a binary mixture, the corresponding information

is obtained from the following equations

η = ρ1 + ρ2 + ρ1ρ2 (G11 +G22 − 2G12) (25)

ζ = 1 + ρ1G11 + ρ2G22 + ρ1ρ2
(

G11G22 −G2
12

)

(26)

In terms of these quantities we have

Bab = ρaρbGab − δabρa (27)

κT =
ζ

kBTη
(28)

V1 =
1 + ρ2 (G22 −G12)

η
(29)

V2 =
1 + ρ1 (G11 −G12)

η
, (30)

where Vi = (∂V/∂Ni)T,p,Ni
is the partial molar volume

of component i at constant pressure, p. These relations
also apply to a small system with a finite volume. Ben-
Naim also provides the inverse relations3. Thermody-
namic properties can be thus computed from KBIs, but
KBIs can also be computed from thermodynamic prop-
erties both for large and small systems. In summary,
we have explained how thermodynamic properties, also
for small systems, can be computed from KBIs, and how
KBIs can be computed from thermodynamic properties.
From the symmetry of the AGC-matrix, it follows that

ΓGC
ab ρGC

b = ΓGC
ba ρGC

a . The thermodynamic factors can
be used to understand solute and solvent properties of
small volumes of arbitrary shape, i.e. fluid mixtures in
confinement.
For completeness, we also provide the corresponding

results for the microcanonical (MC), and the canonical
ensembles (C), to indicate that they are different.

ΓMC
ab (U, V,N,shape) ≡ ρaA

MC
ab (U, V,N,shape)

=
Na

kBTMC

(

∂µMC
b

∂Na

)

U,V,Na

=
ρa

kBTMC

(

∂µMC
b

∂ρa

)

U,V,ρa

(31)

and

ΓC
ab (T, V,N,shape) ≡ ρaA

C
ab (T, V,N,shape)

= βNa

(

∂µC
b

∂Na

)

T,V,Na

= βρa

(

∂µC
b

∂ρa

)

T,V,ρa

(32)

Inversions of the A
MC and the A

C matrices provide the
B

MC
(

U, V,µMC, shape
)

and the B
C
(

T, V,µC, shape
)

matrices. The above procedure is required, as these ma-
trices are not directly obtainable from the fluctuations in
particle numbers, unlike in the grand-canonical ensemble,
cf. Eq. (16).
We are finally in a position to explain how the Small

System Method7,8 can further be applied in practice to
find system properties at any scale, away from the ther-
modynamic limit. For this, we expand the property in
question in the inverse characteristic length L ≡ 3

√
V of

the system, as explained by Schnell et al.7,8 From the
particle number fluctuations, cf. Eq. (16), we obtain the
matrix B

GC which is expanded as follows;

B
GC(T, V,µ, shape) = B

∞+B
s 1

L
+B

se 1

L2
+B

sc 1

L3
+ . . .

(33)
All expansion coefficients depend on (T, V,µ) and the
shape of the volume as well. The number of terms needed
in the expansion depends on the system considered22, the
B exponents s, se, sc stand for surface, edge and corner
contributions respectively. The reason to use the expan-
sion of BGC in 1/L is that particle number fluctuations
are additive. This improves the convergence in the ther-
modynamic limit. The thermodynamic limit values of
the KBIs, G∞

ab and B∞
ab , are obtained from this expan-

sion in 1/L. They depend on the environmental variables
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(T, V,µ), but no longer on the shape. The A
∞- ma-

trix and the corresponding thermodynamic factors Γ
∞

are found by inversion of the B
∞ matrix. Kirkwood and

Buff1 explained how we can find all thermodynamic prop-
erties of a mixture in the large system limit. In this limit
(only), we can change from one to another set of environ-
mental variables using Legendre transforms. Away from
this limit, Legendre-Fenchel transforms have shown to be
useful40.
In this section we have shown how the formulas central

to KB theory also can be used to obtain thermodynamic
data for small systems. The procedure presented has to
a large extent not yet been applied. Several systematic
investigations may be worth while pursuing. For pure
systems, one may consider the effect of shape variation
on various properties, while for mixtures, the inverse size
of the volume is expected to influence thermodynamic
properties.

IV. APPLICATIONS AND PERSPECTIVES

The analysis of molecule fluctuations in a system in
terms of thermodynamic properties and its link with
the structural properties through KBIs, and RDF, is
one of the first and major results of statistical mechan-
ics. The possibility to simulate, explore, validate and
use these properties has been proposed since the emer-
gence of classical molecular simulations. A lot has been
done to obtain access to the RDFs in an infinite range
with good accuracy, as summarised in previous sections.
Since ten years, it has been shown that the approach
of KBIs to thermodynamic limit follows a well-defined
size-dependence. The use of this dependence offers an
efficient method, the SSM, to extrapolate small system
thermodynamic properties to the thermodynamic limit.
Furthermore, it gives the possibility to investigate the
physical interpretation of the KBI and related properties
whatever the size range. Beyond the number of parti-
cle fluctuations (KBI), energy fluctuations also show this
dependance and were used to get access to partial molar
energies and enthalpies41. It offers new statistical tools
that can be used to investigate challenging systems and
phenomena.
KBI was built by Kirkwood and Buff as a solution the-

ory that can be applied to pure systems and to mixtures.
It is well adapted to analyse liquid systems and in par-
ticular to get access to the properties of both the whole
system and individual species. In the context of solu-
tion theory, the applications are very broad and we will
restrict ourselves to underline its importance in the con-
text of transport properties for the determination of the
diffusion coefficients. A review of other applications of
KBI is provided in Ref.35.
As was shown in Section III, the KB theory has a
strong statistical basis and the question of applying
KBIs to other type of systems, like heterogenous ones,
is well opened. For example, in the case of hydrophobic

drugs, Shimizu et al. in 201918 investigated the solute-
hydrotrope affinity and its consequences on the balance
between self-aggregation and solubilization. Different
authors19–21 discussed the effect of the cosolvent on the
protein stability using KBIs as efficient tools. Tripathy
et al. in 202017 studied the water density fluctuations
around a generic hydrophobic polymer chain hydration
shell and were able to compute the hydration shell com-
pressibility using the SSM approach. Each type of sys-
tems has specificities that need to be taken into account
in order to apply properly KB theory. In the following
we will restrict to give some insights and perspectives on
the concept of finite volume KB theory, we will illustrate
and discuss the use of KBIs on confined and adsorbed
systems and on solids.

A. Self and Collective Diffusion Coefficients in Fluids and

their Finite-Size Effects

An important application of Kirkwood-Buff integrals
is their use in computing transport diffusion coefficients
from Molecular Dynamics (MD) simulations39,42–44.
Transport diffusion coefficients are used to describe the
transport of species due to a gradient in concentration
or chemical potential. The thermodynamic driving force
for such mass transfer is the gradient in chemical poten-
tial, but in experiments and MD simulations one only has
direct access to concentration gradients. Converting gra-
dients in concentration to gradients in chemical potential
requires partial derivatives of activity coefficients, which
can be computed directly from Kirkwood-Buff integrals.

1. Finite-size effect for self diffusion

In the limit of very low concentrations, the process
of transport diffusion reduces to self-diffusion45. Self-
diffusion describes the motion of individual molecules in
a system as a function of time25. It is well known that
computed self-diffusivities have finite-size effects, i.e. for
the same thermodynamic state the value of the com-
puted self-diffusivity changes with system size46–49. In
1993, Dünweg and Kremer50 and later in 2004, Ye and
Hummer derived the following equation for the finite-
size-dependence of self-diffusivities in 3-dimensional cu-
bic systems with periodic boundary conditions based on
hydrodynamic arguments48:

D∞
self,a = DL

self,a +
kBTξ

6πηL
= DL

self,a +DYH (34)

in which D∞
self,a is the self-diffusivity of species a in

the thermodynamic limit, DL
self,a is the computed self-

diffusivity of a system with simulation box length L (and
volume L3), and η is the viscosity of the system (which
does not depend on L). The constant ξ has the di-
mensionless value of 2.837298 for periodic cubic simu-
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lation boxes. Expressions for finite-size effects of self-
diffusivities in confinement and rotational diffusion are
also available51–53.

2. Collective diffusion

Collective diffusion (or transport diffusion) describes
the transport of a large collection of molecules due to a
driving force e.g. a gradient in concentration or chemi-
cal potential45,54,55. The most well-known approach for
transport diffusion is generalised Fick’s law. For an n-
component system in a molar reference frame, the diffu-
sion flux Ja for component a equals45

Ja = −ct

n−1
∑

b=1

Dab∇xb (35)

in which ct is the total molar concentration, xb is the mole
fraction of component b, and Dab are the Fick diffusion
coefficients. In a binary system (n = 2), there is a single
Fick diffusion coefficient D that does not depend on the
choice of the reference frame. We refer to Ref.54,56 for
other reference frames.
An alternative formulation for multicomponent diffu-

sion is the Maxwell-Stefan (MS) approach, in which gra-
dients in chemical potentials are considered as driving
forces (instead of concentration gradients)45

− 1

RT
∇T,Pµa =

n
∑

b=1,b 6=a

xb (ua − ub)

D– ab
(36)

in which R is the universal gas constant, ∇T,Pµa is the
gradient in chemical potential of component a at constant
temperature and pressure, and ua is the average molar
velocity of component a. For an n-component system,
there are n(n−1)/2 Maxwell-Stefan diffusion coefficients
which (unlike the Fick diffusivities Dab) are symmetric
i.e. D– ab = D– ba. MS diffusion coefficients can be com-
puted from both equilibrium and non-equilibrium Molec-
ular Dynamics simulations42. The Fick and Maxwell-
Stefan approaches describe the same physical phenom-
ena, so their diffusion coefficients Dab and D– ab are re-
lated. The Fick diffusivities in a molar reference frame
are obtained from45

[D] = [∆][Γ] (37)

in which the matrix [Γ] is the so-called matrix of ther-
modynamic factors for diffusion57 and [∆] is a matrix
function of MS diffusion coefficients.
The matrix [B] is defined by the inverse of matrix [∆],

so [B] = [∆]−1. MS diffusion coefficients are related by
the elements of the matrix [B] according to

Baa =
xa

D– an
+

n
∑

j=1,b 6=a

xb

D– ab
(38)

for a = 1, 2, · · · , (n− 1) and

Bab = −xa

(

1

D– ab
− 1

D– an

)

(39)

for a, b = 1, 2, · · · , (n − 1) and b 6= a. The resulting ex-
pressions for MS diffusion coefficients of binary, ternary,
and quaternary systems can be found in Refs.42,43,58.
The elements of matrix of thermodynamic factor for

diffusion, [Γ], are54

Γab = δab + xa

(

∂ ln γa
∂xb

)

T,p,Σ

(40)

in which γa is the activity coefficient of component a. The
symbol Σ is used to point out that the partial derivative
of the logarithm of the activity coefficient is performed
at constant mole fractions of all other component in the
system, except for the n-th component. It is important
to note that the thermodynamic factor for diffusion, Eq.
40, is defined differently than the thermodynamic factor
as defined in Eq. 21. The main difference is that the
quantities that are kept constant in the differentiation
are different. Both definitions are widely used in the lit-
erature, so it is important to make a clear distinction.
It is important to note that for binary and multicompo-
nent systems, the derivatives of Eq. (40) follow directly
from Kirkwood-Buff coeffcients3. For various activity co-
efficient models (i.e. ln γa as a function of composition),
expressions for Γab are available from Ref.57. For a binary
system, the thermodynamic factor for diffusion equals

Γ = 1 + x1

(

∂ ln γ1
∂x1

)

T,p

= 1 + x2

(

∂ ln γ2
∂x2

)

T,p

(41)

The thermodynamic factor for diffusion of binary sys-
tems follows directly from the Kirkwood-Buff integrals
according to3

Γ = 1− ρ1ρ2Ω12

ρ1 + ρ2 + ρ1ρ2Ω12
(42)

in which ρa = Na/L
3 is the number density of species a

and the auxiliary quantity Ω12 is defined as

Ω12 = G11 +G22 − 2G12 (43)

and Gab is the Kirkwood-Buff integral in the thermo-
dynamic limit. Explicit expressions for Γab for ternary
and quarternary systems can be found in Refs.14,43. The
value of the thermodynamic factor for diffusion describes
how much molecules of species 1 and 2 like each-other,
compared to the 1−1 and 2−2 interactions. A condition
for thermodynamic stability of binary systems is Γ > 045.
Close to the value Γ = 0, the system will demix in the
individual components.

3. Finite-size effects for collective diffusion in binary

systems

In binary systems, there is only a single Fick diffusion
coefficients D and a single MS diffusion coefficient D– 12.
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The Fick diffusivity D equals

D = ΓD– 12 (44)

Jamali and co-workers have developed a phenomenolog-
ical finite-size correction for MS diffusivities in binary
systems59

D– ∞
12 = D– L

12 +
1

Γ

kBTξ

6πηL
= D– L

12 +
DYH

Γ
(45)

in which DYH is the YH correction (Eq. 34). From
Eq. (44), the finite-size correction for binary Fick dif-
fusivities equals

D∞ = DL +DYH (46)

This means that the YH correction should be directly ap-
plied to Fick diffusivities (as is done for self-diffusivities),
and the corresponding finite-size effect for the MS diffu-
sivity differs by a factor 1/Γ. Therefore, finite-size ef-
fects of computed MS diffusivities can be very large if Γ
is small i.e. close to demixing conditions. For binary sys-
tems, the thermodynamic factor for diffusion can be cal-
culated by computing finite-size effects of transport prop-
erties: the viscosity of the system follows from the finite-
size-dependence of the self-diffusivities, and the ther-
modynamic factor for diffusion follows from the finite-
size-dependence of the computed MS diffusivities. This
could serve as an independent check for Γ computed from
KBIs. The finite-size-dependence of diffusion coefficients
for systems with three or more components is discussed
in Refs.49,60.

B. Application of nanothermodynamics to confined fluids.

The expansion expressed by Eq. (33) originates in the
nanothermodynamic theory of Hill23. It derives from the
way Hill includes shape and size as a variables in the
thermodynamic description of small systems24. Such sys-
tems are not extensive in Gibbs sense, but extensivity
in the description can be restored by taking an ensem-
ble of small systems into account. Doing this, Bedeaux
et al.22 were able to find scaling laws, characteristic for
the ensemble in question. For instance, in the descrip-
tion of porous media, a scaling law was derived from
the grand potential, giving the difference of the so-called
integral pressure and the normal (differential) pressure
times the volume in terms of the subdivision potential
of the ensemble61–63. The difference between the inte-
gral and differential pressures is related to the disjoin-
ing pressure62. The law was studied for slit pores and
cylindrical pores and a first example of a simple porous
medium. While Legendre transforms apply to ensembles
of large systems only, it was found that Legendre-Fenchel
transforms were useful in two cases40. Whether or not
they are generally valid remains to be investigated.
Clearly, there are new tools becoming available and

”new thermodynamics” at the nanoscale waiting to be

explored. This applies to ensembles of varying sets of
control variables, to particular shapes and sizes, as well
as to other small scale phenomena, where classical ap-
proaches find their limits.

C. Application to surfaces

An important class of phenomena that relates directly
to confinement is adsorption on a surface. For molecules
adsorbed on a flat surface a two dimensional (2D) KBIs
can be easily determined using the 2D number fluctua-
tions of a surface or simply knowing the 2D surface RDF.
In such case the weight-function w, has a different expres-
sion9 than Eq (10), for a circular surface we have:

w(r, L) = 4r
(

arccos(x)− x(1− x2)1/2
)

, x ≡ r/L

(47)
It should also be pointed out that for the specific case

of an adsorbed layer on a surface which in chemical equi-
librium with its environnement, grand-canonical condi-
tions apply and canonical conditions corrections should
not be used. As was illustrated in Ref.64, such approach
provides a direct way to estimate the chemical activity of
adsorbed molecules on flat surfaces. Using a 3D approach
it has also been possible to get access to the adsorption
properties of molecules adsorbed in zeolites8,65. The case
of curved surfaces should however be dealt with using fi-
nite surface KBI66.

D. Extension of KBI theory to solids

The KB theory is a major theory of solutions and has
been used extensively in liquid solutions. As the theory
relies only on general statistical mechanical relations, it
should also be valid and useful for the study of solid solu-
tions. However, the KB theory was not applied to solids
until very recently, probably because RKBI diverges in
solids. This is related to the fact that in a crystal, the os-
cillations of the RDF decay very slowly with interatomic
distance, because the crystal is periodic and so the atomic
positions are correlated to arbitrary distance. The di-
vergence of the RKBI is unphysical as can be seen by
considering the compressibility equation

1 + ρG∞ = ρkBTκT (48)

which relates the KBI G∞ to the isothermal compress-
ibility κT , where ρ is the number density. Since the com-
pressibility of solids is finite, G∞ is also finite, so KBIs
should converge in the limit V → ∞. This is indeed the
case, if the finite-volume KBI is used instead of the RKBI,
as was recently shown by Miyaji et al.38 and Krüger67.
Fig. 2 shows the convergence properties of the running
KBI and the finite-volume KBI for a perfect fcc crystal
at zero temperature. The RDF is shown in (a). The
running KBI (b) has huge oscillations whose amplitude
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FIG. 2. (a) RDF of a perfect fcc lattice with nearest neighbor
distance 1, as a histogram plot with bin size ∆r = 0.05. The
blue line indicates the uncorrelated limit, g = 1. (b) Running

KBI G̃L. The blue dotted lines are a guide to the eye (y =
±10L). (c) Finite volume KBI GV for a sphere of diameter L.
The blue line is the exact, infinite volume value G∞ = −1/ρ
with ρ =

√
2. In the inset, GV is plotted over 1/L. The red

line is a linear fit, y = G∞ + α/L with α = ρ/3.

increases linearly and the integral diverges. In sharp con-
trast, the finite volume KBI (c) converges to −1/ρ, which
is the correct theoretical value at T = 0, as can be seen
from Eq. (48).

The KB theory exploits the fact that a fluid is homoge-
neous and isotropic, which implies that the PDF depends
only on the particle distance and reduces to the radial dis-
tribution function (RDF). A crystalline solid is neither
homogeneous nor isotropic, so the PDF and RDF are, in
principle, different. An obvious solution to this problem
consists in going back to Eq. (1), which is valid in any
system. However, this would make the KBI method nu-
merically much more demanding. Under certain assump-
tions, KB theory can be applied to solids in the same way
as in liquids38,67,68. This is the case of polycrystal which
has the same symmetry as a fluid, i.e. it is homogeneous
and isotropic. Krüger67 has applied the KB theory to a
monoatomic, harmonic crystal. The obtained isothermal
compressibility agrees perfectly with continuum theory
(Newton-Laplace equation). This proves that the com-
pressibility equation (Eq. 48) is exactly valid in harmonic
solids with isotropic, linear phonon dispersion, provided
that G∞ is calculated using finite-volume KBI.

Miyaji et al.38 have presented the first numerical ap-
plication of KBIs to solids with a realistic model, namely

fcc argon with a Lennard-Jones potential. While RKBI
strongly diverged, the finite-volume KBI converged for
all temperatures. Compared to the liquid state, how-
ever, the convergence is very slow which makes extrapo-
lation to the thermodynamic limit difficult. To solve this
problem, Miyaji et al.38 introduced a convolution of the
RDF which leaves the infinite volume integral (G∞) un-
changed. The point-like particles in the usual definition
of the RDF, are replaced by spheres of finite diameter σ
and constant density 6/(πσ3). The parameter σ can be
chosen arbitrarily, without changing the value of G∞.
The corresponding RDF can be written as a convolution:

g̃(r) =

∫ r+σ

max(0,r−σ)

g(r′)χ(r′, r)dr′ (49)

where g(r) is the original RDF and the convolution func-
tion χ(r′, r) has a simple analytic form38. When choos-
ing the value of σ in the order of the average particle
distance, the convoluted RDF g̃(r) is extremely smooth
and the convergence of the KBI is dramatically improved.
This method was applied to solid argon for temperatures
between 15 K and 75 K. KBIs could be computed with
good accuracy and G∞ was converged to better than
1%. The computed isothermal compressibility from KBIs
was somewhat underestimated but its temperature de-
pendence agreed very well with experiment. Recently,
Miyaji et al.69 presented the first application of the KB
theory to a solid solution, namely ArxXe1−x for x < 0.1
at temperatures around 80 K. The isothermal compress-
ibility of the mixture, the partial molar volumes of Ar
and Xe and the thermodynamic factor Γ were obtained
from KBIs using Monte Carlo simulations. Additionally,
the activity coefficients of each species were computed by
integrating Γ. The analysis of the thermodynamic results
evidenced the emergence of a liquid state around x ≈ 0.1.
In summary, it was shown that the KB theory can be

applied to solids, but only if the finite-volume KBIs are
used instead of the RKBI. Both single atom crystals and
solid solutions were studied successfully, but a few prob-
lems remain to be solved. The systematic deviation in the
isothermal compressibility needs to be understood and
corrected in a non-empirical way. The difference might
be induced by a small shift of the simulated RDF, which
converges very slowly in crystals. Also, the assumption
that solids can be described by a homogeneous, isotropic
statistical ensemble should be critically reexamined. It is
hoped that the possibility to compute KBIs in solids will
open up many opportunities for thermodynamic studies
of solid condensed materials.

V. CONCLUSIONS

This paper presents a perspective of our contribution
to the KB theory. It emphasises the finite volume depen-
dence of KBIs and sheds light on its physical meaning.
The linear 1/L size-dependence of KBIs is an important
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property that has been used to extrapolate KBIs to the
thermodynamic limit without knowing the RDF to in-
finite size, the so-called Small System Method. In this
limit, the KB theory provides a direct access to ther-
modynamic quantities like the thermodynamic factor, Γ,
that can be understood as a measure of non-ideality. This
quantity is crucial to compute accurate mutual diffusion
coefficients. We presented new applications and perspec-
tives for surfaces, confined systems and solids. This last
is particularly promising since it offers an efficient route
to compute partial molar quantities of solid mixtures
that are difficult to access otherwise. Below the ther-
modynamic limit, the thermodynamic relations have to
be rewritten by introducing new concepts like those orig-
inated from nanothermodynamics. KBIs can be consid-
ered as a key function for this purpose because they relate
to clear thermodynamic quantities whatever the size and
shape of finite volume.
To conclude, it is important to underline that KB the-

ories provide a rigorous thermodynamic background that
can be applied to complex systems both at the small and
large scales. The recent developments enlarge its domain
of application to more complex ones, and give also new
useful statistical tools to better understand dynamic phe-
nomena like nucleation or confinement.
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33N. Dawass, P. Krüger, J. M. Simon, and T. J. H. Vlugt, Molec-
ular Physics 116, 1573 (2018).
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