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A computational method is presented for angle-resolved photoemission spectra (ARPES) and photoelectron
diffraction (PED) in the ultraviolet regime. The one-step model is employed and both initial valence and final
continuum states are calculated using the finite-cluster, real-space multiple scattering method. Thereby the
approach is versatile and provides a natural link to core-level PED. The method is applied to the Cu(111)
valence band and good agreement with experiment is found for both ARPES spectra and PED patterns. When
the PED patterns are integrated over a filled band of a single-orbital symmetry, such as Cu-3d, we show, both
numerically and analytically, that the exact theory with delocalized initial states can be replaced by the much
simpler, core-level-type theory where the initial states are taken as localized.

DOI: 10.1103/PhysRevB.83.115437 PACS number(s): 79.60.Bm, 73.20.At, 71.20.Gj

I. INTRODUCTION

Energy- and angle-resolved x-ray and ultraviolet photoe-
mission spectroscopy are, respectively, successful techniques
for complete structural characterization and for mapping
electronic energy bands of solids.1 The attraction of photo-
electron diffraction in the x-ray regime lies in the possibility
of obtaining information on the structural properties simul-
taneously with chemical selectivity. Experimental patterns
can be accurately reproduced within the multiple scattering
approach2 and complete angular intensity mappings can be
used to form electron holograms.3,4 In contrast, the ultravi-
olet regime allows study of photoemission from electronic
states close to the Fermi level, which are responsible for
the chemical and the low-energy physical properties of the
system and thus determine many interesting phenomena, such
as metal-insulator transitions and high-Tc superconductivity.
Angle-resolved photoemission spectroscopy (ARPES) in the
ultraviolet region is nowadays the most used technique
for momentum space microscopy.5 Recently, spin-resolved
ARPES has also become an interesting tool to study the
spin-polarized Fermi surface of magnetic materials.6 The data
analysis of ultraviolet valence band photoemission spectra
relies on the conservation laws of energy and momentum
in the photoemission process. In the ultraviolet regime the
photon momentum is negligible in the photoemission process.7

Thus the spectra show peaks at those photoelectron energies
and momenta where k-vector conserving transitions exist
between the occupied and the unoccupied bands. Collecting
the photoelectron emission intensities over the valence band
region for different detection angles allows, in principle,8

mapping of the band structure of the system.
Diffraction patterns of low-energy electrons are not often

studied in solid state physics, because in this case a clear
interpretation of the experimental data is missing, due both to
(i) the need for an appropriate description that combines the
structural and band states properties and (ii) the multiple scat-
tering events felt by low-kinetic-energy outgoing electrons.
The electrons are emitted from states that are delocalized and

form the energy bands of the sample, and thus the initial
state reflects the hybridization properties of the system and
can be strongly sensitive to the difference between bulk and
surface emitter sites. A simple structural interpretation as in
core-level photoelectron diffraction is not valid for the valence
band, which makes the analysis of the angular dependence
more difficult. However, several interesting experimental
studies on diffraction patterns have been performed during
the last decades. Osterwalder et al.9 studied valence band
photoelectron diffraction from Cu(111) in the ultraviolet (UV)
regime. The energy-integrated diffraction patterns could be
successfully modeled using single scattering calculations with
localized initial states. Stuck et al.10 performed valence band
diffraction patterns with high-kinetic-energy photoelectrons
to extract the chemically resolved partial density of states
(DOS) of alloys. Sondergaard et al.11 used such angular
patterns to break down the DOS into different l-resolved
contributions. Angle-resolved photoemission is also used
for free clusters, which are interesting systems both for a
fundamental understanding of the many-body problem and
for practical nanotechnological applications.12,13 The study of
the angular distribution of photoelectrons can unravel cluster
size effects that underline the transition from individual atoms
and molecules to larger systems, finally evolving to the solid
state behavior.14

The multiple scattering method has proven to be a pow-
erful and flexible approach for various electron spectro-
scopies, including x-ray photoemission and x-ray photoelec-
tron diffraction (XPD).2 The real-space multiple scattering
(RSMS) formulation was tailored to core excitations in the
x-ray regime and there is no counterpart for photoemission
in the low-energy, that is, UV regime. In existing RSMS
implementations, recent effort has been devoted to an ab
initio description of various spectroscopies over a wide energy
range,15 but ARPES and photoelectron diffraction in the UV
regime are not included in these developments. The RSMS
approach relies on the use of finite-size clusters, in contrast
to band structure codes that model the system as an infinite
crystal.
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In this paper we present the development of a RSMS
method for valence band photoemission and its application
to ARPES and valence band photoelectron diffraction (PED)
at the Cu(111) surface excited with UV light. The calculations
are compared with available experimental data, namely energy
spectra at various emission angles (ARPES) and full PED
patterns for finite energy intervals in the valence band. We
find good agreement both for ARPES and PED. In the case
of ARPES the agreement is comparable with that of k-space
methods, which shows that k|| conservation does not need
to be implemented explicitly to obtain reliable results. In
the PED part, we make extensive comparison with the data
by Osterwalder et al.9,16. We show both numerically and
analytically that for PED patterns integrated over the whole
Cu-3d band, the exact theory with delocalized initial states
can be replaced by a simplified XPD-type theory with localized
initial states. This was already suggested by Osterwalder et al. 9

and the present results provide a proof of this conjecture.
The paper is organized as follows: in Sec. II we present

the theoretical approach, and in Secs. III and IV we study,
respectively, ARPES and PED calculations on Cu(111) and
compare the results with experimental data. In Sec. V we draw
conclusions.

II. THEORY

The photoemission intensity for photons of energy h̄ω and
polarization q is given by

I (ω,q,k′) ∼
∑

ν

|〈k′|Dq |ν〉|2δ(Ek′ − Eν − h̄ω). (1)

Here, |k′〉 is final state of the photoelectron detected with
momentum k′. This photoelectron wave is described as a
time-reversed LEED state, that is, as the sum of a plane
wave exp(ik′r) and spherical waves incoming at each atomic
site. |ν〉 is an initial state with energy Eν . We use the dipole
approximation of the optical transition, and Dq is the dipole
operator for q-polarized light. Here we focus on nonmagnetic
systems, so electron spin does not appear explicitly in Eq. (1).
We describe both the initial and the final states in RSMS theory.
For a point r inside the finite cluster the wave functions are
given by

〈r|k〉 =
∑
iL

BiL(k)φiL(r,Ek), (2)

where φiL(r,Ek) is the solution of the Schrödinger equation for
the single scatterer at site i with angular momentum L ≡ (l,m),
energy Ek , and T -matrix normalization.17

BiL(k) are the multiple scattering amplitudes. Here k
denotes the wave vector of the outgoing plane wave inside
the matter. It is related to the wave vector in the asymptotic
region k’ through conservation of energy and momentum
parallel to the surface. We have k′

|| = k|| and (k′
⊥)2 = k2

⊥ − Vin,
where Vin is the so-called inner potential, which physically
represents the height of the surface potential barrier. In muffin-
tin approximation Vin is given by the difference between
the vacuum level and the interstitial potential V0. We have
Vin = W + EF − V0, where W is the work function and EF the
Fermi level. In the numerical calculations we took W = 4.5 eV

from experiment and V0 and EF from a self-consistent band
structure calculation of bulk Cu.

The multiple scattering amplitudes are given by2

BiL(k) =
√

k

π

∑
jL′

τ
ij

LL′ i
l′YL′(k̂)eik·Rj0 , (3)

where τ
ij

LL′ is the scattering path operator, which represents the
probability amplitude for the electron to propagate from site i

with angular momentum L to site j with angular momentum
L′. The scattering path operator is obtained by inversion of
the matrix [t−1 − G]; see, for example, Ref. 2 for details. The
other factors on the right-hand side of Eq. (3) come from the
development of the outgoing plane wave in terms of spherical
waves.

If we took localized orbitals as initial states |ν〉 in Eq. (1), the
foregoing formulas would yield the usual multiple scattering
theory for core-level XPD.2 In the present case of valence
band photoemission, the initial states are delocalized and we
develop them in RSMS with Eq. (3). The sum over initial
states in Eq. (1) can then be avoided by virtue of the optical
theorem,2 which we write as∑

ν

〈r|ν〉〈ν|r′〉δ(E − Eν) =
∑
ijLL′

φiL(r,Eν)I ij

LL′φ
∗
jL′(r′,Eν),

where

I
ij

LL′ ≡ − 1

2iπ
(τ − τ †)ijLL′ (4)

is essentially the imaginary part of the scattering path operator.
The photoemission cross section becomes

I (ω,q,k′) ∼
∑
ijLL′

M
q

iL(k)I ij

LL′(Ek − h̄ω)Mq∗
jL′(k), (5)

where

M
q

iL(k) =
∑
L′′

B∗
iL′′(k)〈φiL′′(Ek)|Dq |φiL(Ek − h̄ω)〉. (6)

There is no sum over sites in Eq. (6) because the dipole operator
is local. The sum over L′′ is limited to the two terms with
l′′ = l ± 1 and m′′ = m + q.

We note that the present formalism is fully equivalent to
one-step ARPES theory with the layered KKR method.18,19

The only difference is that we do not rely on translational
invariance in the surface plane, but we use the RSMS approach
for all three dimensions. While the layered KKR approach has
obvious numerical advantages for systems with small surface
unit cells, the present scheme appears more flexible and its
link to core-level XPD is more direct.

Contrary to core-level XPD, the waves emitted from differ-
ent sites interfere coherently in valence band photoemission.
This coherence is established in Eq. (5) through the imaginary
part of the scattering path operator I ij . If we make a single-
site approximation, I ij ∼ δij , then coherence is lost and the
standard XPD formulas are recovered. In contrast, one may
also apply some approximation to the scattering path operator
used for the calculation of the final-state multiple scattering
amplitudes BiL(k) in Eq. (3). If one puts, for example, τ

ij

LL′ =
δij δLL′ , then all final-state scattering is neglected. If one,
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moreover, replaces φL′′(Ek) in Eq. (6) by a spherical Bessel
function, then the plane wave approximation is obtained.

The atomic T matrices and radial matrix elements have been
calculated from a self-consistent potential of bulk copper. The
latter was obtained with the linear-muffin-tin orbital (LMTO)
code 20 in the local density approximation to density functional
theory and the atomic sphere approximation. The dipole matrix
elements are evaluated with the acceleration form of the dipole
operator.21 In all applications below we consider unpolarized
light, by adding the intensities for left and right circular
polarization.

III. ANGLE-RESOLVED PHOTOEMISSION SPECTRA

In this section we focus on energy distribution curves. First,
we discuss the DOS and then calculate ARPES. In our real-
space method we describe the Cu(111) surface by a finite
semispherical cluster. We have used cluster sizes of 146 and
260 atoms. In the upper panel in Fig. 1, we compare the local
DOS at a site in the center of the cluster with the bulk Cu
DOS as obtained with the LMTO band structure method for
the infinite crystal.

It can be seen that the RSMS approach succeeds in
describing the main features of the bulk DOS, when the
calculation is performed using clusters of both 260 and 146
atoms. The main peaks are well reproduced for both cluster
sizes. While some discrepancy is observed in the low-energy
region, the overall agreement is good. This shows that both
clusters are large enough to account for the contribution not
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FIG. 1. (Color online) Density of states (DOS). Upper panel: Bulk
Cu DOS from LMTO (a) vs local DOS on a central atom in a 146-atom
(b) and a 260-atom (c) Cu(111) cluster. Lower panel: Total DOS of a
146-atom (d) and a 260-atom (e) cluster.

only of the near-surface atoms but also of deeper sites with a
bulk-like electronic structure.

The lower panel in Fig. 1 shows the total DOS of the whole
cluster, again, for the two cluster sizes. In the total cluster
DOS the peaks are smeared out compared to the local DOS
of the central atom [Figs. 1(b) and 1(c)]. This difference can
be attributed to the undercoordinated surface atoms since the
inner atoms have a bulk-like DOS as shown in Figs. 1(b)
and 1(c)]. The total cluster DOS hardly changes when going
from the 146-atom cluster to the 260-atom cluster; that is, it is
well converged for clusters of about 150 atoms.

We now turn to ARPES, that is, we study the varia-
tion of the energy distribution curves as a function of the
photoelectron emission direction (k′). ARPES is the main
experimental technique for study of band structures. Thus the
following results will show to which extent our real-space
multiple scattering approach is sensitive to band structure. In
Fig. 2 we present results for unpolarized light of 16.8 eV
at normal incidence and fixed polar emission angle θ = 45◦.
For easy comparison with the experimental data of Ilver
and Nilsson,22 all calculated spectra have been rescaled in
intensity by a constant factor and broadened with a Gaussian
of width 0.1 eV. Density functional theory systematically
underestimates the binding energy of the Cu-d band states by
a few tenths of an electron volt.23,24 This has been attributed
to self-energy effects which may be taken into account using
the GW approximation.25 The calculation of the self-energy
lies beyond the scope of the present study. Here we correct
for its major effect in a phenomenological way by shifting the
calculated spectra rigidly by -0.3 eV in all comparisons with
experiment (Figs. 2– 6).

Figure 2 shows that the overall agreement between theory
and experiment is very good. Almost all peaks are well
reproduced in both position and intensity. The evolution of
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FIG. 2. Photoelectron spectra from Cu(111) obtained with
16.8-eV light for polar emission angle θ = 45◦ and various azimuthal
angles φ with respect to [2̄11]. Theoretical spectra (solid lines) have
been shifted by −0.3 eV in energy. Relative intensities have not been
rescaled. Experimental data (dashed lines) are taken from Ref. 22.
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FIG. 3. Photoelectron spectra from Cu(111) with 21.2-eV light
(He I) for θ = 60◦. (a) Experimental data reprinted from Fig. 3 of
Ref. 9. Note that the ripples in the parabolic feature at 0–2 eV are an
artifact due to the numerical data treatment. (b) Calculated spectra
shifted by 0.3 eV to a higher binding energy.

the line shape as a function of azimuthal angle φ agrees
particularly well with the data. The agreement with experiment
is as good as the one obtained by Jepsen,23 who used a layered
KKR scheme.

For another comparison with experiment, we now consider
He I light (21.2 eV) and polar angle θ = 60◦. Figure 3(a)
shows the experimental ARPES data taken from Ref. 9, and
Fig. 3(b), the calculated spectra. Also, in this case, the
agreement between theory and experiment is good, not only
for the 3d band in the range 2–5 eV but also for the parabolic
sp-like band, which is seen at binding energies below 2 eV.

The results obtained in this section show that the present
RSMS approach is suitable for ARPES calculations despite the
fact that we do not take advantage of the k|| conservation that
holds for (perfect) crystal surfaces. The appropriate cluster
size will in general depend on the system and the required
spectral resolution. In the present case of Cu ARPES, it is
found that a relative small cluster size of about 150 atoms
yields sufficiently converged spectra.

IV. PHOTOELECTRON DIFFRACTION PATTERNS

Here we study PED from the Cu-3d band excited with
He I (21.2-eV) or He II (40.8-eV) light. The calculated
PED patterns are compared with experimental data of

Osterwalder et al.9,16 Following the procedure used in these
experimental papers, we normalize the PED intensity for each
azimuthal scan individually, to remove possible polar angle
variations of purely instrumental origin. We thus consider the
normalized intensity In(θ,φ) ≡ Ib(θ,φ)/Īb(θ ), where Ib(θ,φ)
is the bare intensity and Īb(θ ) is its average over 0 < φ < 360◦.
The angular mesh is stereographically projected and the
intensities In(θ,φ) are plotted in a linear gray scale. Such a plot
is called a PED pattern in the following. The calculated patterns
in Figs. 4–6 were obtained with the 146-atom cluster. The
260-atom cluster gave almost-identical PED patterns, which
are not shown here. In the experiments the photocurrent was
recorded for some finite energy window (E1 − E2), that is, the
photoemission intensity is integrated over this energy interval.
First, we have considered three windows, each 1.2 eV wide,
which cover the Cu-3d band. The experimental binding energy
windows are W1 = (2.0–3.2), W2 = (3.2–4.4), and W3 =
(4.4–5.6) eV. For the calculations, these intervals have been
rigidly shifted by −0.3 eV to match the experimental d-band
position, as before. The experimental 16 and calculated PED
patterns for these energy windows are shown in Fig. 4. In this
work all PED patterns were calculated from nonsymmetrized
data. The Cu(111) surface has C3v symmetry. While the
threefold symmetry is fully respected in the PED patterns,
the mirror symmetry is only approximate, that is, the patterns

FIG. 4. Experimental (a–c) and calculated (d–f) photoelectron
diffraction (PED) patterns from Cu(111) with He I light (21.2 eV),
for three energy windows in the Cu-3d band. The hemisphere is
stereographically projected on the disk with the azimuthal orientation
fixed by the [–211] direction at 2 o’clock. PED intensities are
normalized (see text) and plotted on a linear gray scale with the
values for black (b:) and white (w:) as indicated.
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display a C3 symmetry. This is because in the experimental
setup 9 the incoming light vector does not lie in a mirror plane.

In Fig. 4, both experimental and theoretical PED patterns
vary strongly between the different energy intervals. In
principle, some variation can be due to final-state scattering
since the kinetic energy of the photoelectrons changes from
one energy window to the next by 1.2 eV. In particular
cases, such as molecules at shape resonances, a change of
final-state energy by a few electron volts can indeed lead to
strong variations of the PED patterns. In the present system,
however, this effect is negligible, as we have checked explicitly
by calculating PED patterns, where the initial-state energy
window is fixed and the final-state energy window is changed
by 1.2 or 2.4 eV (see Appendix A). The same conclusion
was reached by Osterwalder et al. 9 through single scattering
calculations with localized initial states. Therefore, the strong
variation of the PED pattern as a function of energy seen in
Fig. 4 is an almost-pure initial state effect. It is due to the
coherent superposition of waves emitted from different sites
whose phase relation depends on the initial-state energy. In
a molecular bond, for example, the waves emitted from the
two atoms are in phase for a bonding state and out of phase
by π for an antibonding state. Thus the fast variation of the
PED patterns across the Cu-3d band reflects the delocalized
nature of these states. Quite generally, the PED pattern can be
expected to vary much faster with initial- than with final-state
energy, because the band width, or in other terms the splitting
between bonding and antibonding states, is normally much
smaller for the valence than the final-state continuum bands.

In Fig. 4, the agreement between experimental and theoret-
ical PED patterns is very good for energy window 2 and fair
for windows 1 and 3. Moreover, the evolution of the pattern
when going from window 2 to window 3 is qualitatively well
reproduced in the calculations, in particular, the shift of the
main diffraction peaks to larger polar angles and their splitting
into V-shaped features. The calculated patterns display a
slightly larger contrast than the experimental ones. This can
be expected since in the calculations we have disregarded all
broadening effects such as hole decay, inelastic photoelectron
scattering, and lattice vibrations.

We have also calculated the PED patterns for He II light
(40.8 eV) with the same binding energy windows as for He I
(Fig. 4). The He II patterns are shown in Fig. 5. It is seen that
also for He II light, the PED pattern changes drastically from

FIG. 5. Calculated photoelectron diffraction patterns from
Cu(111) with He II light (40.8 eV), for three energy windows
(W1–W3) in the Cu-3d band. Binding energy intervals are indicated,
as well as black (b:) and white (w:) values on the linear gray
scale.

FIG. 6. Photoelectron diffraction patterns excited with He I (a–c)
and He II (d–f) light for an energy window corresponding to the
whole 3d band. In Theory II (c, f) localized Cu-3d orbitals were used
as initial states. The linear gray scale is the same for experimental
and theoretical patterns, with normalized intensities for black (b:) and
white (w:) as indicated.

one energy window to the next, which is a signature of the
delocalized character of the initial Cu-3d states.

In Fig. 6, PED patterns for an energy window corresponding
to the whole Cu-3d band (2.0–5.6 eV) are shown, for excitation
with He I and He II light. The experimental data [Figs. 6(a)
and 6(d)] is the same as that in Ref. 9. In Fig. 6, “Theory I”
[Figs. 6(b) and 6(e)] refers to the same method as in Fig. 4, that
is, the full multiple scattering theory for both the initial and
the final state. The corresponding PED patterns [Figs. 6(b) and
6(e)] agree very well with experiment [Figs. 6(a) and 6(d)].
While the agreement is excellent for He II light, it is also very
good for He I light, except that the theoretical He I patterns
have a larger overall contrast. As already mentioned, this is
expected because broadening effects were neglected in the
calculations. From the comparison between experimental and
theoretical patterns in Figs. 4 and 6, we can conclude that the
theoretical approach presented in this paper affords an accurate
description of valence band PED. It successfully reproduces
the observed dependence on both the initial (Fig. 4) and the
final state energy (Fig. 6).

The patterns labeled ”Theory II” in Figs. 6(c) and 6(f)
were calculated using standard XPD theory, that is, from the
incoherent sum of photoemission intensities calculated sepa-
rately for each atom with localized initial states |ν〉 in Eq. (1).
For the latter, Cu-3d orbitals with an energy in the middle of
the 3d band were used. Formally, Theory II is obtained from
Theory I by the substitution τij → δij ti in Eq. (4). The initial
states of Theory II are the same as in Osterwalder et al. 9

The final states are different, however: single scattering theory
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was used in Ref. 9, but full multiple scattering here. When we
compare the PED patterns in Figs. 6(c) and 6(f) with those
in Ref. 9, we find only small differences. This is unexpected
for the present photoelectron energies below 50 eV where
multiple scattering effects are assumed to be large. Recently,
Sébilleau and Natoli26 investigated this issue and showed that
Cu-3d emission is a rather particular case, where the multiple
scattering series converges for energies as low as 20 eV and so
final-state multiple scattering effects are weak.

We now turn to the comparison of the calculated patterns
with Theory I versus Theory II in Fig. 6. It is seen that
the patterns are almost identical. This means that the rather
involved description of delocalized initial states in Theory I can
be replaced by a simple XPD-type calculation with localized
initial states without loss of accuracy. From the results in
Figs. 2–5, it is clear that this simplification is only possible for
the PED pattern with an energy window corresponding to the
whole Cu-3d band. An XPD-type calculation as in Theory II
can obviously account neither for the energy dependence
of the PED patterns in Figs. 4 and 5 nor for the large
energy dispersions shown in Figs. 2 and 3. These energy
dependencies are genuine band structure effects due to the
quantum mechanical interference between waves emitted from
valence orbitals on different sites. Precisely this interference
is neglected in the single site approximation of Theory II.
The question then arises why this approximation works so
well for the energy-integrated PED patterns over the whole
Cu-d band (Fig. 6). Osterwalder et al. 9 argued that the initial
states get effectively localized because the initial wave vector is
averaged over large parts of the Brillouin zone due to the finite
angular resolution, short escape depth, and phonon effects.
While these broadening effects may be important for the
experimental patterns, they have been completely neglected
in the present calculations. So these effects cannot explain
why the calculated PED patterns are almost identical between
Theory I and Theory II in Fig. 6. In Appendix B we show
that the XPD-type Theory II is a good approximation to
the exact delocalized Theory I whenever the photoemission
intensity is integrated over a filled, not too wide band of
pure l character (such as Cu-3d). The crucial point is that
in such a situation, all (delocalized) eigenstates in the energy
window can be expanded over localized l orbitals using a
single, energy-independent radial wave function. When the
whole band is integrated over, the sum over delocalized
eigenstates can be replaced by a sum over localized basis
states by virtue of a unitarian transformation. We further need
to assume that the optical transition matrix elements between
localized basis states and photoemission final states vary only
slowly with energy such that the matrix elements can be
approximately calculated using a single, average final-state
energy in the middle of the window. The quality of this
second approximation can be appreciated by looking at the
rate at which core-level XPD patterns vary as a function of the
final-state energy, since the variation comes from the same type
of matrix elements. For an energy range of a few electron volts
(Cu-d band width), the variation of XPD patterns is usually
very small, so the approximation is well justified. For the
present case of Cu(111) PED with He I or He II light, the very
weak dependence on final-state energy is explicitly shown in
Appendix A.

Our proof that delocalized Theory I and XPD Theory II are
equivalent for band-integrated photoemission is relevant not
only for valence-band, but also for core-level photoemission.
Very recently it was shown experimentally that the C-1s core
level in graphene displays a nonzero band dispersion.27 This
means that even these deep core states are partially delocalized,
and so interference between different emitter sites takes place,
which is neglected in XPD theory. In a standard photoemission
experiment, XPD theory can nevertheless be used without loss
of accuracy, because the energy window is much wider than the
core-level “band” width of a few tens of milli–electron volts.27

V. CONCLUSIONS

We have developed a real-space multiple scattering method
for valence-band photoemission in the UV regime and have
applied it to ARPES and PED of Cu(111). The numerical
results show that the RSMS approach is able to reproduce
all essential features of valence band spectra in both angle-
and energy-resolved mode. The peak dispersion in the ARPES
data could be well reproduced, which shows that the method is
highly sensitive to the band structure of the system, despite the
use of finite clusters where the k|| conservation is not exactly
fulfilled. PED patterns have been calculated for finite energy
windows in the Cu-3d band. The patterns depend strongly on
the selected binding energy, which reflects the delocalized
character of the valence eigenstates where waves emitted
from different sites interfere coherently. Good agreement
with the available experimental PED patterns was achieved,
especially when the energy window corresponds to the full
Cu-3d band. Since in the latter case, the PED patterns can also
be reproduced using a simple XPD-type theory with localized
initial states, it has been argued that a localization of the initial
Cu-3d states takes places in the photoemission process.9 From
the present results, we find no evidence for such a localization
since all the experimental data could be well reproduced using
the delocalized description of the Cu-3d states. The fact that
a simplified XPD-type calculation with localized initial states
also reproduces the the 3d-band integrated PED patterns is
not proof of a localization of the Cu-3d states. Instead we have
shown, both analytically and numerically, that the exact theory
with delocalized initial states reduces to XPD theory when a
filled, pure l band is integrated over. We have thus clarified and
proved the conjecture of Osterwalder et al.9 that XPD theory
can be used for an efficient calculation of energy-integrated
valence-band PED.
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APPENDIX A: VARIATION OF PED PATTERNS WITH
INITIAL- AND FINAL-STATE ENERGY

In Figs. 7 and 8 we show calculated photoelectron diffrac-
tion patterns from Cu(111) for the three energy windows in
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FIG. 7. Calculated photoelectron diffraction patterns from
Cu(111) with a photon energy around 21.2 eV (He I). The same
linear gray scale is used for all patterns, with 0.4 for black and 1.8 for
white.

the Cu-3d band and the final-state energy varied independently
in the same range. The patterns on the diagonal in Fig. 7
correspond to He I light, and those on the diagonal in
Fig. 8, to He II light. They are identical to the patterns in
Figs. 4(d)–4(f) and Fig. 5, respectively (except for slightly
different gray scales). The off-diagonal patterns correspond
to photon energies shifted by ±1.2 or ±2.4 eV such that the
initial-state energy window is kept fixed in each row and the

FIG. 8. Calculated photoelectron diffraction patterns from
Cu(111) with a photon energy around 40.8 eV (He II). The same
linear gray scale is used for all patterns, with 0.4 for black and 2.0 for
white.

final-state energy is fixed in each column. The initial binding
energy (EB) and final-state kinetic energy (Ekin) are indicated.
(The photon energy is given by h̄ω = Ekin + W −EB , with
W = 4.5 eV.) It can be clearly seen that the PED patterns
hardly change when the final-state energy is varied in a range
corresponding to the Cu-3d width (3.6 eV).

APPENDIX B: XPD APPROXIMATION

Here we show that the photoelectron intensity integrated
over a filled band of pure l character can be approximately
calculated using XPD theory, that is, by replacing the exact,
delocalized initial states by localized basis orbitals, as we have
done in Figs. 6(c) and 6(f). The main assumption is that all
eigenstates in the initial energy window can be expanded using
a single radial function per site of orbital symmetry l and that
the energy window covers the whole set of states spanned by
these functions.

Recalling Eq. (1), the photoemission intensity is given by

I (k′) =
∑

ν

|〈k′|Dq |ν〉|2δ(Ek′ − Eν − h̄ω). (B1)

We consider an initial energy interval (E1,E2) that corre-
sponds to a band of pure l character in the tight-binding
sense. This means that any eigenstate |ν〉 in this energy
interval can be written as a linear combination of local-
ized, energy-independent, and orthonormal basis functions
of l symmetry:

|ν〉 =
∑
im

Cν
ilm|ilm〉, (B2)

where m is the magnetic quantum number. This is a unitarian
transformation, that is, we have∑

ν

Cν
ilmCν∗

j lm′ = δij δmm′ . (B3)

The photoemission intensity becomes

I (k′) =
∑
ijmm′

〈k′|Dq |ilm〉〈j lm′|D†
q |k′〉

×
∑

ν

Cν
ilmCν∗

j lm′δ(Ek′ − Eν − h̄ω). (B4)

We now consider the photoemission intensity integrated
over the interval (E1 + h̄ω,E2 + h̄ω) that is, over the whole
l band:

Iint(k̂′) ≡
∫ E2+h̄ω

E1+h̄ω

I (k′)dEk′ =
∑
ijmm′

∑
ν

Cν
ilmCν∗

j lm′

×
∫ E2+h̄ω

E1+h̄ω

〈k′|Dq |ilm〉〈j lm′|D†
q |k′〉

× δ(Ek′ − Eν − h̄ω)dEk′ . (B5)

The local matrix elements 〈k′|Dq |ilm〉 are of the same
type as those appearing in core-level XPD theory. They
vary rather slowly with final-state energy Ek′ and can
thus be approximated using a single, average final-state
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energy Ēf = Ēν + h̄ω, where Ēν denotes the center of the
valence band:

〈k′|Dq |ilm〉 ≈ 〈Ēf ,k̂′|Dq |ilm〉. (B6)

Then the matrix elements can be taken out of the integral and
the integration over the δ can be performed and yields 1 for

all ν. Together with the orthogonality relation, Eq. (B3), we
then get

Iint(k̂′) ≈
∑
im

|〈Ēf ,k̂′|Dq |ilm〉|2. (B7)

This is the desired result since the right-hand side is the XPD
formula.
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