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Peter Krüger,† Sondre K. Schnell,‡ Dick Bedeaux,§ Signe Kjelstrup,‡,§ Thijs J. H. Vlugt,‡

and Jean-Marc Simon*,†

†ICB, UMR 6303 CNRS, Universite ́ de Bourgogne, F-21078 Dijon, France
‡Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
§Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT: Exact expressions for finite-volume Kirkwood−Buff (KB) integrals are derived for
hyperspheres in one, two, and three dimensions. These integrals scale linearly with inverse system
size. From this, accurate estimates of KB integrals for infinite systems are obtained, and it is shown
that they converge much better than the traditional expressions. We show that this approach is very
suitable for the computation of KB integrals from molecular dynamics simulations, as we obtain KB
integrals for open systems by simulating closed systems.
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The prediction of macroscopic properties from information
at the scale of constituent particles is a major challenge in

physical chemistry. For multicomponent fluids, a powerful
scheme in this respect was derived by Kirkwood and Buff
(KB),1,2 who showed that many thermodynamic quantities
(e.g., activity coefficients, partial molar volumes) can be
expressed in terms of integrals of pair correlation functions
(PCFs) over space (KB integrals). PCFs can be computed from
molecular dynamics (MD) simulations, but using these directly
for calculating KB integrals is tricky: (1) KB integrals require
PCFs for an infinite range of particle distances, while MD is
performed on finite systems; (2) convergence of KB integrals is
very slow; and (3) KB integrals need PCFs for open systems,2,3

while MD in general provides PCFs for closed systems. This
subtle difference between open and closed systems cannot be
ignored. Although Monte Carlo (MC) methods can be used to
simulate open systems (e.g., grand-canonical ensemble), they
have difficulties for typical fluids with high density because of
inefficient particle insertion procedure. To improve the
convergence of KB integrals using PCFs from MD, many
methods have been proposed, e.g., the use of smoothing filters
for PCFs,4 discrete Fourier transformation methods,4 and
various extrapolation schemes using approximate PCFs for
large distances.5 Although some of these methods are very
efficient to obtain KB integrals, they are in general numerically
rather involved, most of them rely on empirical input of some
sort, and in all cases the simplicity of the original KB integrals is
lost.
In this work, we derive analytic expressions for finite-size KB

integrals as single integrals of PCFs in one, two, and three
dimensions. The linear extrapolation of these expressions to
infinite volume is shown to converge much better than the
usual KB formula. The new approach is tested with analytical

PCFs and confirmed by MD simulations. We also show that it
is essential to take into account the finite-size dependence of
PCFs obtained from MD. Essentially, our approach allows for
the calculation of KB integrals for an open system while
simulating a closed one, solving many of the problems
encountered when computing KB integrals from MD results.
In an infinitely extended, multicomponent fluid with species

α,β,..., we consider an arbitrary finite (sub) volume V. The
particle number fluctuations in V can be expressed as integrals
over the one- and two-particle densities ρα

(1)(r1) and ραβ
(2)(r1,r2):
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Here, Nα is the number of α-particles inside V, ⟨...⟩ denotes
grand-canonical averages, and δαβ is the Kronecker delta. In a
fluid, by virtue of translational and rotational invariance, we
have ρα

(1)(r) = cα and ραβ
(2)(r1,r2) = cαcβgαβ(r12), where cα are

macroscopic number densities, gαβ are PCFs, and r12 ≡ |r1 −
r2|.

1 Dividing eq 1 by cαcβV and noting that cα = ⟨Nα⟩/V, we
define the KB integral, Gαβ

V , for a finite and open system:
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In the limit V → ∞, the double integral on the right-hand
side (r.h.s.) can be reduced to a simple integral by the variable
transformation r2 → r = r1 − r2.

∫= −αβ αβ
∞

∞
G g r dr( ( ) 1)

0 (3)

This infinite volume case was already considered by
Kirkwood and Buff,1 and Gαβ

∞ in eq 3 are referred to in the
literature as KB integrals. In the remainder, we consider a fixed
pair of species and drop the indices α,β. We further define h(r)
≡ g(r) − 1. It is crucial to note that for finite V, the double
integral in eq 2 cannot be reduced to a single one by the
transformation r2 → r = r1 − r2, because the integration domain
of r depends on r1. Therefore, the truncation of eq 3 to radius
2R,

∫ π̃ ≡G h r r r( )4 dR R
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does not provide finite-size density fluctuations.6 Still, the use
G̃R for large R as a replacement for G∞ is widespread,2 despite
its poor convergence.
The KB integral of eq 2 can be rewritten by introducing the

function

∫ ∫ δ≡ −w r
V

r r dr dr( )
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where δ(r − r12) is the Dirac delta function. w(r) can be
calculated analytically for hyperspheres of radius R (see Table 1
where we use the notation w(r,x) with x = r/(2R)). Using eq 2,
we then find for the KB integrals

∫= =G G h r w r x r( ) ( , ) dV R
R
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We show now that GR varies asymptotically with the inverse
size of any system having a finite correlation length ξ. Consider
the quantity F ≡ ∫ Vdr1∫ Ω−Vdr2h(r12), where V is a closed
volume with surface S, Ω is the whole space, and Ω − V is the
space outside V. For sufficiently large V, only particles in a layer
of thickness ξ on either side of the surface contribute to F.
Therefore, when V increases, F scales as the surface S. We can
write F = ∫ V dr1∫ Ω dr2h(r12) − ∫ V dr1∫ V dr2h(r12). In the
integral over Ω, using r = r1 − r2 for any r1, we obtain F = ∫ V
dr1∫ Ω drh(r) − ∫ V dr1∫ V dr2h(r12) = VG∞ − VGV. As F ∼ S
for large V, we have GV − G∞ ∼ S/V ∼ 1/R for volumes of any
shape and dimension that are large compared to (2ξ)d. The
only assumption is the existence of a finite correlation length,
which solely breaks down in the critical point. The
proportionality factor of the inverse size dependence can be
estimated by a first-order Taylor expansion of GR: G∞ ≈ GR −
(1/R)(dGR/d(1/R)) ≡ ĜR, resulting in
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w − x(∂w)/(∂x) is also listed in Table 1.
The exact expression (eq 6) and the extrapolated one (eq 7),

derived for hyperspheres and not for other geometries, are our
main results, which for R → ∞ both reduce to the KB integral
(eq 3). Although eq 4 and eqs 6 and 7 look very similar, their
physical meaning is completely different. The integral in eq 4 is
centered on one particle. Therefore, eq 4 does not respect the
symmetry of the fluid except in the limit V → ∞. This implies,
e.g., that the average density in the finite volume V considered
in eq 4 differs from the macroscopic value. In sharp contrast,
eqs 6 and 7 respect the symmetry of the system because no
particular point is singled out in eq 2. The volume centering in
eqs 6 and 7 is explicitly taken into account in the function w(r),
so the average density inside any finite volume V equals the
macroscopic value. This point is essential when dealing with
ionic systems, as it is well-known that a key criterion for
meaningful physics is to respect the average charge neutrality in
the sampled volume.
The convergence of eqs 4,6, and 7 can be tested using

oscillatory decaying functions.8,9 We consider the following
PCF mimicking a liquid with atoms of diameter σ:
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The length scale at which fluctuations of h(r) decay is
controlled by χ. Despite its simplicity, this model provides
detailed insight into the differences in convergence of G̃R, GR,
and ĜR (see Figure 1). In all cases, G̃R, GR, and ĜR eventually

Table 1. Geometrical Functions for d = 1,2,3 Dimensions, in
Agreement with Giorgini et al.7,a

d KB w w − x(∂w/∂x)

1 1 1 − x 1
2 2πr 4r(arccos(x) − x(1 − x2)1/2) 4r(arccos(x) + x(1 − x2)1/2)
3 4πr2 4πr2(1 − 3x/2 + x3/2) 4πr2(1 − x3)

ax = r /(2R). w and −x(∂w/∂x) are strictly zero for x ≥ 1. The
functions that correspond to w in the usual KB theory (eq 4) are listed
under “KB”.

Figure 1. Various approaches to compute KB integrals from PCFs.
h(r) (eq 8) for χ = 2 (a) and χ = 20 (b), and G̃R, GR, and ĜR obtained
using eqs 4,6, and 7, respectively, as a function of reduced values of r, R
(left) and their inverse (right).
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converge to the same value for G∞. The standard, truncated
KB-integral, G̃R, is a strongly oscillating function with an
amplitude that increases for R < χσ/2. For R > χσ/2, a very
slow convergence sets in. The oscillations in h(r) (black) are
hugely amplified in G̃R (green). Our new expression ĜR (red) is
also oscillating, but with an amplitude that never increases and
is always much smaller than that of G̃R. Consequently, ĜR

converges much faster than G̃R. For χ = 2 and R = 2.5σ, ĜR

converges to G∞ within ±0.2σ3, while at the same R, the
difference between G̃R and G∞ is ±2σ3 (1 order of magnitude
larger). The superior convergence of ĜR compared to G̃R is
even more obvious for χ = 20: for R = 20σ, ĜR converges to G∞

within ±0.2σ3, while G̃R oscillates with an amplitude almost 2
orders of magnitude larger (15σ3). The exact finite volume
expression GR is a very smooth and essentially monotonic
function (blue). GR shows weak oscillations, but their amplitude
is 2 orders of magnitude smaller than that of ĜR. The
oscillations in GR are even smaller than those of h(r). While G̃R

hugely amplifies h(r) oscillations, the exact expression GR

strongly suppresses them and is thus free of the major
convergence problem of the usual KB expression (eq 4). As
shown in the right panels of Figure 1, GR − G∞ scales as 1/R
for large R, so a precise estimation of G∞ can be obtained by a
linear extrapolation of GR to 1/R → 0.10 In the case where the
PCF is known only in a small range, the most precise estimate
of G∞ is GR. Alternatively, an accurate estimate of G∞ is
provided by ĜR, which has a much smaller error (1 or 2 orders
of magnitude) than the truncated integral G̃R.
When KB integrals are calculated using PCFs from MD of a

closed system of N particles (hN(r)), it is known that hN(r) has
a finite-size scaling2 and does not converge to 0 for r→∞. The
difference between hN(r) and h∞(r) can be expanded in a
Taylor series in 1/N11

≈ +∞h r h r
c r
N

( ) ( )
( )

N (9)

where c(r) is a function that depends on r but not on N. From
MD simulations of one thermodynamic state for different
system sizes, c(r) and h∞(r) follow trivially from eq 9. To test
the linear scaling prediction of eq 9, MD simulations of a binary
WCA fluid were performed for different simulation box sizes
(L), while keeping the number density ρ = N/(L/σ)3,
temperature T, and mixture composition constant (see Figure
2). Clearly, for larger simulation boxes, h(r) approaches 0, and
shows a linear scaling with 1/N.
In Figure 3 (left), the integrals G̃R and ĜR are plotted for

PCFs of two system sizes, L/σ = 10 and L/σ = 40. For L/σ =
10, the integrals show a characteristic R3 divergence for large r,
which is due to the fact that hN(r) does not go to 0 for r → ∞.
This finite size effect was corrected by estimating h∞(r) (eq 9),
resulting in G̃∞

R and Ĝ∞
R . They practically coincide with the KB

integrals of the largest system L/σ = 40. In Figure 3 (right), the
corresponding exact finite volume KB integrals GR are plotted
as a function of σ/R. The R3 divergence in the data for L/σ =
10 is completely removed when the corrected PCF is used and
the regime linear in 1/R appears clearly. A linear extrapolation
of G∞

R thus leads to its value in the thermodynamic limit, G∞.
Calculation of the correction function c(r) requires simulations
of two system sizes. These can be done quickly for two small
systems, without losing accuracy, and result therefore in a large
reduction in computing time as compared to a single simulation
on a large system. The combined use of h∞(r) and eq 6 (or its
approximation eq 7) enables the efficient calculation of KB

integrals corresponding to the thermodynamic limit using MD
simulations of relatively small systems, and is therefore superior
to the traditional approach of eq 4, which shows a poor
convergence.
Instead of calculating the upper side of eq 2 (resulting in eq

6), in principle, one could also directly compute the lower side
of eq 2 from MD simulations. This requires the sampling of
particle number fluctuations in subvolumes V ∼ Rd embedded
in a simulation box of volume Ld. Of course, these local
fluctuations also scale with 1/R and G∞ can be estimated by
extrapolating the linear regime to 1/R→ 0. This so-called small
subsystem approach was used by us in earlier work.12−15

Although correct in the thermodynamic limit, it has severe
disadvantages compared to eqs 6 and 7: (1) the connection to
PCFs is lost, and therefore the connections to quantities that
intimately depend of PCFs (e.g., pressure tensor17) as well as
theoretical approaches that rely on knowledge of PCFs are also
lost; (2) finite-size corrections as eq 9 cannot be applied, so the
range where linear scaling of fluctuations with 1/R is observed

Figure 2. MD results for a binary 75/25 WCA fluid (d = 3) at T = 1.8
and constant density ρ = 0.7 (reduced units; see ref 12 for more
details). Left: h(r) of 1−1 correlations as a function of r for different
system sizes (L). The inset exhibits the function h(r) from 0 to 10σ (σ
being the particle diameter). Right: averages of h(r) (left figure) for r >
5σ as a function of the inverse simulation box volume. Similar results
were found for the other interaction pairs. The PCFs were computed
for distances up to L√2/2.

Figure 3. Left: MD calculations of various G(R) (eqs 4, 6, and 7) for
the WCA system of Figure 2 using h(r) or h∞(r). Results for a much
larger system (L/σ = 40) are also shown. Right: GR calculated using
h(r) and h∞(r) as a function of σ/R; G̃∞

R and Ĝ∞
R are also shown. As a

guide to the eye, we added linear extrapolations of G∞
R , G̃∞

R , and Ĝ∞
R

(dotted lines) until the same value, G∞ = −1.60 ± 0.01. In all cases,
h∞(r) was calculated from eq 9 using h(r) for two system sizes (L/σ =
10 and L/σ = 9).
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is limited (and is sometimes not easy to detect), and the final
result still depends on the system size; (3) statistics are
significantly worse as local particle number fluctuations can
behave as telegraph signals. However, it is important to indicate
that, contrary to the present approach, the fluctuation method
is also well adapted to nonisotropic systems, which has been
clearly documented for adsorbed phases in all-silica MFI-type
zeolites.12,16

In summary, an exact expression of KB integrals for finite
volumes has been derived for hyperspheres in one, two, and
three dimensions. The new formalism was applied to an
analytical PCF and to MD simulation results. For systems with
a finite correlation length, the finite volume integrals converge
to the thermodynamic limit linearly as 1/R. The new
expressions (eqs 6 and 7) converge much faster than the
usual KB integral (eq 4). The reason is that the new integrals
are volume centered and therefore respect the symmetry of the
fluid, in sharp contrast to the traditional integrals. Moreover, a
simple method was proposed to correct for the system size
dependence of PCFs. Our approach enables efficient
calculations of KB integrals for open systems, using MD
simulation results for relatively small closed systems. Much
smaller systems are needed compared to the traditional
approach (eq 4). We feel that the calculation of KB integrals
will be greatly facilitated by the present theory, in particular for
situations where the use of open systems is prohibited, like in
ionic systems.2
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