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A B S T R A C T

The Kirkwood-Buff (KB) theory provides a rigorous framework to predict thermodynamic properties of
isotropic liquids from the microscopic structure. Several thermodynamic quantities relate to KB integrals,
such as partial molar volumes. KB integrals are expressed as integrals of RDFs over volume but can also be
obtained from density fluctuations in the grand-canonical ensemble. Various methods have been proposed to
estimate KB integrals from molecular simulation. In this work, we review the available methods to compute
KB integrals from molecular simulations of finite systems, and particular attention is paid to finite-size ef-
fects. We also review various applications of KB integrals computed from simulations. These applications
demonstrate the importance of computing KB integrals for relating findings of molecular simulation to macro-
scopic thermodynamic properties of isotropic liquids.

© 2018.

1. Introduction

The prediction of thermodynamic properties of multicomponent
isotropic fluids from molecular information is of a great interest [1–6].
Molecular-based methods provide predictions for experimental ther-
modynamic and transport data and, contribute to developing predic-
tive models, both needed for many industrial applications [7]. In that
regard, the Kirkwood-Buff (KB) theory provides an important connec-
tion between the microscopic structure of isotropic liquid mixtures and
the corresponding macroscopic properties [8]. Kirkwood and Buff [8]
expressed thermodynamic quantities such as partial derivatives of the
chemical potential with respect to composition, partial molar volumes,
and isothermal compresibility in terms of integrals of radial distribu-
tion functions (RDFs) over infinite and open volumes. These integrals,
which are considered the key quantity in the KB theory, are referred
to as KB integrals. Alternatively, KB integrals can be obtained from
density fluctuations in the grand-canonical ensemble [9,10]. Rooted in
statistical mechanics, the theory applies to any type of intermolecular
interactions, making it one of the most general and important theories
of isotropic fluids [8,9,11,12].

The KB theory was derived in 1951 [8], however, it has not gained
much interest until the late 70s after Ben-Naim [11] proposed the in-
version of the KB theory. The inversion of the theory allows the cal-
culation of KB integrals from experimental data [13–16]. KB inte-
grals provide useful information about the local inhomogeneity and

∗ Corresponding author.
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the affinity between components [11]. Later, other than using macro-
scopic experimental data, KB integrals were also obtained using small
angle scattering techniques [17–22]. Perera et al. [23] concluded that
KB integrals obtained from scattering experiments generally agree
well with those calculated using the inversion method.

Thirty years following the inversion of the KB theory, molec-
ular simulation emerged as a powerful tool for studying pure liq-
uids and liquid mixtures [24]. There are two main types of molecu-
lar simulation techniques [25,26]: Molecular Dynamics (MD), where
trajectories of molecules are found by solving Newton's equation of
motion numerically; and Monte Carlo (MC) simulations where rel-
evant states of the system are sampled according to their statistical
weight [24–28]. In both simulation techniques, RDFs and local den-
sity fluctuations are easily computed, thus in principle enabling the
calculation of KB integrals. Molecular simulations can be used to
study closed systems with fixed number of molecules, or open sys-
tems in which the number of molecules fluctuate [25]. It is important
to note that molecular simulations can only be performed for finite
systems, while the KB theory requires KB integrals to be computed
for infinite and open systems [8]. This has important consequences
as will be shown below. When computing KB integrals from mole-
cular simulations, it is common to simply truncate the KB integrals
at a finite distance, corresponding to the size of the simulation box
[22,29–32]. This results in KB integrals that converge poorly to the
thermodynamic limit, and we will discuss the underlying physical rea-
sons [9,33,34]. Many studies have recognized the disparity between
KB integrals computed from molecular simulation of finite systems
and the integrals defined by Kirkwood and Buff [9,35,36]. A practical
approach to deal with finite-size effects was proposed by Krüger and
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co-workers [35,37] where an expression for KB integrals for finite
volumes was derived. The method of Krüger and co-workers
[34,35,37,38] has been used in many studies [6,39–55]. According to
Hill's thermodynamics of small systems [56,57] (also called nanother-
modynamics), KB integrals for finite volumes scale with the inverse
of the characteristic length scale of the small system and this scaling
can be extrapolated to the thermodynamic limit (i.e to KB integrals as
defined by Kirkwood and Buff). Several other methods were proposed
to compute KB integrals from molecular simulation of finite systems
[36,58–60]. The basic idea is to extrapolate information provided from
RDFs and density fluctuations from finite systems to the thermody-
namic limit, and thus obtain estimates for KB integrals corresponding
to the thermodynamic limit.

The objective of this paper is to review the available methods for
computing KB integrals from molecular simulation. The most im-
portant applications of KB integrals will be discussed. KB integrals
are being used to study different types of systems from simple, like
Lennard-Jones fluids to more complicated systems such as salt solu-
tions [16,41,61,62], alcohol solutions [39,63–65], and biological sys-
tems [31]. For such systems, KB integrals can be used to study a num-
ber of thermodynamic properties. As mentioned earlier, the follow-
ing properties are directly obtained from KB integrals: partial deriv-
atives of the chemical potential with respect to composition, partial
molar volumes, and isothermal compresibility. In addition, the KB
theory is also useful for relating information obtained from molecu-
lar simulation with macroscopic properties. For example, KB integrals
can be used to connect Maxwell-Stefan (MS) diffusivities computed
by molecular simulations to Fick diffusivities found from experiments
[39,40,66,67].

The paper is organized as follows: In section 2, a summary of the
most important parts of the KB theory is presented. In section 3, the
method of Krüger and co-workers [34,35,37,38] for computing KB in-
tegrals from molecular simulation of finite systems is explained. Other
methods of calculating KB integrals from finite systems are reviewed
in section 4. In section 5, the connection between KB integrals and
nanothermodynamics is discussed. In section 6, several important ap-
plications of KB integrals computed using molecular simulation are
presented. In section 7, the inversion of the KB theory is discussed.
Section 8 provides a summary of the main findings of this review.

2. The Kirkwood-Buff theory

In this section, we review the most important relations derived by
Kirkwood and Buff [8]. For the original formulation of the theory, the
reader is referred to the paper by Kirkwood and Buff [8]. A very de-
tailed derivation was presented by Newman [68], and an alternative
derivation was provided by Hall [12].

In the grand-canonical (μTV) ensemble, thermodynamic quantities
are related to KB integrals for an open and infinite system as [8]:

where r is the particle distance and is the RDF of species α
and β for an infinitely large system. In Eq. (1), species α and β can
be the same. For a shell centered around a molecule of type β in an
infinite system (see Fig. 1a), the number of molecules of type α is
4πr2drρα and for an ideal gas and real fluid, respec-
tively. Here, ρα = 〈Nα〉/V is the average number density of species α.

Fig. 1. (a) Correcting RDFs using the method of Ganguly and van der Vegt by adjusting
the bulk density using the access or depletion of molecules of type β (blue) in a vol-
ume V with radius R. (b) Computing KB integrals in the canonical ensemble from local
density fluctuations [35,96]. By using small and open subvolumes embedded in a larger
reservoir (simulation box) one can mimic the grand-canonical ensemble. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Integrating to infinity over the excess number of molecules of type α,
( ), yields . Hence, KB integrals pro-

vide the average excess (or depletion) per unit density of α molecules
around a β molecule, and they reflect the affinity between components
α and β. It is important to note that this interpretation of KB integrals
only holds for infinite systems, as indicated by the upper bound of the
integral in Eq. (1). Truncating the integral of Eq. (1) to a distance R
yields the average excess of type α within a sphere of radius R. We
will see later that the resulting integral does not represent the KB inte-
gral in the thermodynamic limit.

Kirkwood and Buff [8] formulated a relation between integrals
over radial distribution functions and fluctuations in the number of
molecules in the grand-canonical ensemble,

(1)
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where Nα, and Nβ are the number of molecules of type α and β, inside
the volume V, and the brackets 〈⋯〉 denote the ensemble average in
an open system. Hence, 〈Nα〉 is the average number of molecules and
〈NαNβ〉 is the average product of the number of molecules of compo-
nents α and β. δαβ is the Kronecker delta (equal to 1 when α = β and
is zero otherwise). It is important to note that Eq. (2) holds for any
isotropic fluid. Fluctuations in the number of molecules relate to sev-
eral thermodynamic properties [69,70]. For a binary system, the fol-
lowing relations can be derived that relate KB integrals to Ref. [8]:

1. Partial derivatives of chemical potential with respect to the number
of molecules,

2. Partial molar volumes,

3. The isothermal compressibility,

where η and ε are auxiliary quantities that were defined for conve-
nience [9],

Expressions for ternary and multi-component mixtures of these
thermodynamic quantities in terms of KB integrals are available in lit-
erature [9,13,71]. In Eq. (6), the term Gαα + Gββ − 2Gαβ can be used
to indicate the thermodynamic ideality of a binary mixture. It has the
value of zero for ideal solutions. The non-ideality of solutions is often
quantified by the so-called thermodynamic correction factor

Γ [10,42,72]. For a binary mixture, Γαβ is defined as [9,40,66]:

Expressions for the thermodynamic factor for ternary mixtures can
be found in Refs. [9,39,67,71]. For a specific solution, the thermo-
dynamic factor provides an indication of the phase stability, since Γ
relates to the second derivative of the Gibbs energy with respect to
composition [73]. For a binary system, Γ is positive for a thermody-
namically stable mixture and negative for an unstable one. As will be
shown later, the thermodynamic factor can be used to connect Fick
diffusion coefficients to MS diffusivities [72,74]. Moreover, thermo-
dynamic factors can be used to predict the finite-size effects of MS
diffusion coefficients computed using molecular simulation [52].

To compute KB integrals, one can consider local density fluctua-
tions in finite and closed systems rather than computing fluctuations
in the grand-canonical ensemble of infinite systems (R.H.S of Eq. (2)).
In practice, molecular simulation can only access finite systems and
simulating open systems critically relies on insertion and deletion of
molecules, as in the grand-canonical ensemble [25]. In the case of
medium to high density fluids, the probabilities of accepting insertions
and deletions of molecules are very low even with the use of advanced
insertion schemes e.g. Continuous Fractional Component Monte Carlo
(CFCMC) [75–84]. To avoid insertion of molecules, Schnell et al. [10]
developed the so-called small system method (SSM), where macro-
scopic properties are computed using small and open subvolumes em-
bedded in a larger reservoir (see Fig. 1b). Since molecules can enter
and leave the subvolume, it is possible to compute density fluctuations
in the grand-canonical (μVT) ensemble. In such subvolumes, it is pos-
sible to realize configurations that are not allowed in a periodic repe-
tition of the subvolume (which is much closer to the thermodynamic
limit) [25]. For example, the two green-colored molecules in Fig. 1b
would overlap in a periodic repetition of the subvolume, resulting in
a zero statistical weight of such a configuration. When the subvolume
is not periodically repeated but embedded in a large simulation box,
such a configuration is perfectly allowed [85]. This leads to effective
surface effects, and properties of the subvolume should be studied by
considering the thermodynamics of small systems [86]. In section 5,
a brief explanation of thermodynamics of small systems is provided.
To use the SSM for computing KB integrals in the thermodynamic
limit, an expression for KB integrals of finite subvolumes was derived
in Ref. [35]. In the following section, this derivation and the method
proposed by Krüger and co-workers [34,35,37,38] to compute KB in-
tegrals using subvolumes embedded in a finite reservoir is discussed.

3. KB integrals of finite volumes

In 2013, Krüger et al. [35] derived an expression for KB integrals
of finite and open subvolumes embedded in a reservoir. An example
of such subvolumes is provided in Fig. 1b. In this work, the volume of
the subvolume will be denoted by V and L will be used for the charac-
teristic length of the subvolume. The volume and length of the reser-
voir will be denoted by Vbox and Lbox, respectively. We consider an
isotropic fluid, where translational and rotational effects have been in-
tegrated out and focus on a finite and open subvolume V. Krüger et al.
[35] defined the finite-size KB integrals in terms of fluctuations
in the number of molecules, as well as double integrals of particle po-
sitions over the RDF,

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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where r = |r1 − r2| is the pair distance. KB integrals computed from
small subvolumes V scale as the surface area A to volume V ratio,

, where F becomes constant in the limit V→∞ [35].
This scaling law can be explained by the concept of thermodynam-
ics of small systems (see section 5). Alternatively, Krüger et al. [35]
showed that as RDFs have a finite range, splitting the integral domain
in Eq. (9) over the surrounding, ∫V∫Vbox and ∫V∫Vbox − V, also results in
the scaling of as mentioned above. From extrapolating to A/V→0
(or 1/L→0), KB integrals in the thermodynamic limit, , are ob-
tained.

In Eq. (9), the R.H.S and L.H.S are equivalent and can be
computed either from fluctuations in the number of molecules inside
the subvolume V, or by integrating RDFs. Most molecular simulation
packages readily compute RDFs and computing local density fluctua-
tions is a bit more cumbersome. To use RDFs for computing KB inte-
grals, a simpler expression is required instead of the double integrals
of the L.H.S of Eq. (9). In the limit V→∞, the double integrals on the
L.H.S. of Eq. (9) reduce to a single integral over the distance between
molecules 1 and 2. By applying the transformation r2→r = r1 − r2, the
original KB integral (Eq. (1)) is retrieved. However, it is not possible
to apply the same transformation for finite volumes, as r depends on
the position r1. Simply ignoring this dependency results in truncated
KB integrals, here referred to as G0,

where Lmax is the maximum possible distance between two points in-
side in the subvolume V. Note that for finite Lmax, G0 in Eq. (10) is
different from the LHS of Eq. (9) and so it does not yield the num-
ber fluctuations in the finite volume (RHS of Eq. (10)). This important
fact seems to have been overlooked prior to the work of Kruger and
et al. [35]. As shown in Refs. [34,35], the truncation of the infinite KB
integrals (Eq. (1)) to finite distances results in poor convergence. Later
in this section, a physical argument for the poor convergence of Eq.
(10) will be provided. Still, it is desired to deal with a single integral
as opposed to the six-dimensional integration in Eq. (9). For isotropic
fluids, it is possible to re-write the double integrals in Eq. (9) over the
interparticle distance as [35].

where w(r,Lmax) is a geometric weight function that is proportional to
the probability that two points inside V are at distance r,

The function w(r,Lmax) depends on the dimensionality and shape
of the subvolume V. From the definition, it follows that w(r,Lmax) = 0
for r > = Lmax. As a result, Eq. (11) can be written as an integral over
a finite range,

Note that the integrand of Eq. (13) depends on the integration
boundary. An analytic expression for the function w(r,Lmax) was de-
rived for hyperspheres in 1D, 2D, and 3D. The derivation can be found
in Ref. [37]. For a 3D sphere, the expression is:

where x is the dimensionless distance x = r/Lmax, and Lmax is the diam-
eter of the sphere. For a cubic subvolume with side L, an analytic ex-
pression for w(r,Lmax) was recently derived by Krüger and Vlugt [34],

with x = r/Lmax and . For any other arbitrary concave
shape of the subvolume, Dawass et al. [38] proposed a method to com-
pute the function w(r,Lmax) numerically. These authors used umbrella
sampling MC simulations to find the probability distribution of find-
ing two points separated by a distance r inside a subvolume V. The
normalization of this probability distribution function directly leads to
the function w(r,Lmax). This approach can be used for any concave
shape of the subvolume in any dimension. Fig. 2 displays the function
w(r,Lmax) for the following shapes of the subvolume: a sphere, cube,
spheroid, and cuboid. The functions w(r,Lmax) were found numerically
using the approach of Dawass et al. [38]. For a sphere and cube, an-
alytic functions w(r,Lmax) are plotted as well (Eqs. (14) and (15)). As
shown in Fig. 2, numerical and analytic results are in excellent agree-
ment.

When computing KB integrals from density fluctuations or inte-
grating RDFs, effects related to the sizes of the system and the sub-
volume have to be considered [37]. In Fig. 3a, KB integrals of a bi-
nary Weeks-Chandler-Andersen (WCA) [87] mixture are shown for
different sizes for the simulation box at the same temperature and den-
sity. The RDFs of the system are computed from MD simulations
for different sizes of the subvolume, and KB integrals are com-
puted from integrating the RDFs (Eqs. (13) and (14)). In Fig. 3a,
is plotted as a function of 1/L (L is the diameter of a spherical sub-
volume). To obtain KB integrals in the thermodynamic limit, , the
linear part of the scaling of vs. 1/L is extrapolated to the thermo-
dynamic limit (1/L→0). In Fig. 3a, effects related to the size of the

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Fig. 2. The function w(r,Lmax) computed numerically for different shapes of the subvol-
ume (numerical procedure is outlined in Ref. [38]). Dashed lines are analytic functions
w(r,Lmax) of Eqs. (14) and (15) for a sphere and cube, respectively.

system (Vbox) are shown. Unlike large systems, small systems do not
provide a linear regime that is sufficient to extrapolate to 1/L→0. For
all system sizes, not the whole range of distances should be considered
for this extrapolation. As outlined in Ref. [37], it is not advisable to
use subvolumes that extend beyond half the size of the simulation box
and L should always be smaller than Lbox/2. The use of a larger reser-
voir or simulation box Vbox allows larger subvolumes, and increases
the linear regime when is plotted as a function of 1/L.

Besides the finite-size effects of due to finite Vbox, RDFs from
finite and closed systems have to be corrected for finite-size effects.
In literature, several methods have been proposed [35–37,64] to es-
timate RDFs in the thermodynamic limit. These methods will be re-
viewed in section 3.1. The corrections are needed as the KB theory
requires RDFs of open and infinite systems. Fig. 3 presents a compar-
ison between KB integrals computed using corrected RDFs and inte-
grals from RDFs that are not corrected. In Fig. 3b, RDFs are corrected
using the correction of Ganguly and van der Vegt [64] (more details
will be provided in section 3.1). As shown in Fig. 3b, applying a RDF
correction for a small system results in a better convergence of KB in-
tegrals.

In Fig. 3, KB integrals are computed using spherical subvolumes.
However, it is possible to use subvolumes of any shape, provided that
the function w(r,Lmax) is known. In Refs. [34,38,47], the effect of the
shape of the subvolume on computing KB integrals was examined. It
was demonstrated that KB integrals in the thermodynamic limit are in-
dependent of the shape of the subvolume, and only depend on its size.
In section 3.2, shape effects will be discussed. We will show that un-
derstanding shape effects leads to an expression [34] for computing

directly from RDFs of finite subvolumes (section 3.3). The new
expression can be used as an alternative to Eq. (13) where KB inte-
grals of finite subvolumes are computed and then extrapolated to the
thermodynamic limit.

3.1. RDF corrections

RDFs of open systems, , are required for computing KB in-
tegrals. However, RDFs of finite and closed systems are typically ob-
tained from molecular simulation. As a result has to be esti-
mated from RDFs of closed systems before applying the KB integra-
tion. The following corrections have been compared in Ref. [37].

Fig. 3. KB integrals of finite (spherical) subvolumes, , versus 1/L (L is the diameter
of the sphere) from RDFs computed from MD simulations, in the NVT ensemble, of an
equimolar binary WCA fluid. The parameters of the WCA potential are: σ11 = σ22 = 1.0
, ε11 = ε22 = 1.0 and ε12 = 0.5. The dimensionless temperature and density are fixed at
T = 1.8 and ρ = 0.7, respectively. Eq. (13) is used to integrate g12(r) and find . The
radial distribution function g12(r) is (a) not corrected and (b) corrected using the method
by Ganguly and van der Vegt (Eq. (17)).

3.1.1. Ganguly and van der vegt correction
Ganguly and van der Vegt [64] address the asymptotic behaviour

of RDFs computed from simulation of finite systems. For large sys-
tems, RDFs should converge to the value of 1 [9]. For finite and closed
systems, RDFs do not approach this value, e.g. for a single-compo-
nent ideal gas with N molecules inside a fixed volume V, we have
g(r) = (N − 1)/N [88]. The authors proposed that RDFs can be cor-
rected to the thermodynamic limit by using the correct bulk density
when normalizing gαβ(r). For a spherical shell with a central molecule
of type α (see Fig. 1a), the excess or depletion in the number of mol-
ecules of type β can be computed. Since the number of molecules of
type β in the system Nβ is fixed, the bulk density needs to be com-
pensated by the excess or depletion in the number of molecules inside
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a volume V with radius r,

The excess or depletion in the number of molecules is then used to
correct the RDF computed from finite systems,

where is the corrected RDF, and gαβ(r) is the RDF obtained
from a molecular simulation of a finite and closed system. As shown
in Eq. (17), the Ganguly and van der Vegt correction provides a rela-
tively simple method that can be applied to RDFs computed from fi-
nite and closed systems. For an ideal gas, it also reflects the correct
physical behaviour of the RDF. For a single component ideal gas in-
side a closed volume V, the excess or depletion is

Substituting the result in Eq. (17) results in:

which is the correct answer for an ideal gas in the thermodynamic
limit.

3.1.2. 1/N correction
In the book of Ben Naim [9], the difference between the behaviour

of RDFs of closed systems , with total number of molecules
N, and RDFs of open systems is explained. Specifically, it is
shown that converges to 1 for r→∞, while converges
to 1 − 1/N [9]. Therefore, one can consider the difference between

and as a Taylor series in 1/N [89],

where N is the total number of molecules of the system, and c(r) is
a function of the distance r. The function c(r) can be estimated using
two systems with different N but the same thermodynamic state. This

results in the following estimate for the RDF in the thermodynamic
limit [35],

where and are the radial distribution functions for a
closed system with N1 and N2 molecules, respectively. Hence, two
simulations with different number of molecules, N1 and N2 need to be
performed to find , in contrast to the method of Ganguly and
van der Vegt [64] where only a single simulation is sufficient. Another
disadvantage of this method is that it results in numerical inaccuracies
in the computed RDFs and hence the values of KB integrals [37].

3.1.3. Cortes-Huerto et al. Correction
In the work of Cortes-Huerto et al. [36], an expression is derived

to compute KB integrals in the thermodynamic limit from KB inte-
grals of finite subvolumes. In section 4, we provide more details on
the approach of Cortes-Huerto et al. [36] for computing KB integrals
from molecular simulation. To correct for RDF-related effects, the fol-
lowing relation between and gαβ(r) is used from the book of
Ben-Naim [9],

In Eq. (22), gαβ(r) is corrected by a constant value, independent of
r. However, the difference between gαβ(r) and depends on r,
as shown in Ref. [37]. In principle, Eq. (22) only applies in the limit
r→∞ and not for finite r. This approximation implied in Eq. (22) may
affect the accuracy of the computed KB integrals, as will be discussed
in the following section.

3.1.4. Comparison between correction methods
In Ref. [37], a quantitative comparison between the RDF correc-

tion methods considered above was carried out. The corrections were
applied to RDFs of a binary WCA [87] fluid computed from MD sim-
ulations of closed and finite boxes of different sizes. KB integrals
were computed using RDFs corrected using the Ganguly and van der
Vegt [64] correction (Eq. (17)), the 1/N correlation (Eq. (21)), and the
method by Cortes-Huerto et al. [36] (Eq. (22)). The effects of the used
RDF correction method on the accuracy of the computed KB integrals
were investigated. Based on these comparisons, it was shown that the
Ganguly and van der Vegt correction [64] provides the most accurate
KB integrals. It is also the most simple correction in practice. The
1/N correction (Eq. (21)) requires simulating two systems and resulted
in numerical inaccuracies, especially when the difference between N1
and N2 is not chosen carefully. The correction by Cortes-Huerto et al.
[36] was found to reduce inaccuracies due to finite-size effects of the
RDFs, however, not as much as the correction of Ganguly and van der
Vegt. For instance, for the WCA fluid studied in Ref. [37], the correc-
tion of Cortes-Huerto et al. reduced the difference between KB inte-
grals computed from very large systems and KB integrals from small
systems to less than 5%, while the correction of Ganguly and van der
Vegt reduced these differences to less than 1% [37].

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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3.2. Shape effects of the subvolume

The effect of the shape of the subvolume V on computing KB in-
tegrals was studied in Refs. [38,47], and [34]. Strøm et al. [47] found
that when approaching the thermodynamic limit, the KB integrals be-
come independent of the shape of the subvolume. These authors used
arguments from nanothermodynamics to illustrate that for large sub-
volumes, KB integrals should be a function of the size of the subvol-
ume and the surface area to volume ratio, A/V. Dawass et al. [38] stud-
ied KB integrals for different shapes of the subvolumes and presented
numerical results that agree with the findings of Ref. [47]. Here, we
will summarize the main findings of investigating shape effects. This
includes a universal first order expansion of the function w(r,Lmax),
valid for all shapes of the subvolume.

To illustrate the shape effects related to computing KB integrals,
we combine the use of spherical (Eq. (14)) and cubic (Eq. (15)) sub-
volumes with an analytic RDF. We use the following analytic RDF
[90],

where σ is the diameter of the molecule, and χ is the length scale at
which the fluctuations of the RDF decay. We apply the function in Eq.
(23) for a pure fluid, hence we drop the indices α and β for the remain-
ing of this section. The use of an analytic RDF eliminates its finite-size
effects, and hence we can focus on effects due to the size and shape of
the subvolume.

In Fig. 4, we show KB integrals computed for the liquid modeled
by the RDF of Eq. (23), with σ = 1 and χ = 5. KB integrals of finite
subvolumes, GV, are plotted as a function of the inverse size of the
subvolume, 1/L (for a cube, L is the length of one side, and for a
sphere, L = 2R). Fig. 4a shows that in the thermodynamic limit both
shapes of the subvolume lead to the same estimate for G∞. However,
the shape of the subvolume affects the slope of the lines of GV versus
1/L. Fig. 4b shows that as approaches the thermodynamic limit (
L→∞) shape effects can be corrected when plotting the integrals as a
function of the area to volume ratio A/V. This is due to the fact that in
the limit L→∞, KB integrals are a function of the ratio A/V, and not the
shape of the subvolume. This was shown theoretically by the study of
Strøm et al. [47]. The behaviour of KB integrals in the thermodynamic
limit can be explained using the function w(r,Lmax) at small distances.
In the thermodynamic limit, the values of the function w(r,Lmax) at
small distances have the largest contribution to KB integrals GV (Eq.
(13)). Dawass et al. [38] found that for all shapes studied, numerically
computed values of the function w(r,Lmax) have the value of 4πr2 at
the limit r→0. The function w(r,Lmax) can be expanded around r = 0
to find the following universal expression for any concave and contin-
uous volume [34,38],

where A is the surface area of the subvolume. Eq. (24) shows that the
function w(r,Lmax) depends on the size r and the ratio A/V. The shape
contribution originates from the term . Therefore, properties of
large subvolumes are independent of shape. This is referred to as the

Fig. 4. KB integrals of the fluid described by Eq. (23) for a sphereical and cubic sub-
volumes, versus (a) the inverse of the size of the subvolume, 1/L and (b) the ratio of the
surface area to the volume (A/V) of the subvolume.

so-called shape thermodynamics limit, where properties of the sub-
volume are dependent on the size but not the shape of the subvol-
ume [85]. In the conventional thermodynamic limit, properties are in-
dependent of both size and shape of the subvolume. It is illustrative
to see how the universal expression of the function w(r,Lmax) of Eq.
(24) compares to analytic functions of w(r,Lmax) for a sphere and a
cube, Eq. (14) and Eq. (15), respectively. To compare Eq. (24) with
the leading terms of Eqs. (14) and (15), one can express all equa-
tions in terms of the distance r and the linear length of the sub-
volume L (for a sphere, L is the diameter and for a cube, L is the
length of one size). For a sphere, using x = r/Lmax = r/L in Eq. (14)
and A/V = 6/L in Eq. (24), one will arrive at the same weight func-
tion: . The same result is obtained for

a cube, if one uses and A/V = 6/L in Eq. (15)
and Eq. (24), respectively. Moreover, it would be interesting to see if
Eq. (24) would provide a physical reasoning for the poor behaviour
of truncated KB integrals (Eq. (10)). If we consider a subvolume
V with zero surface area A = 0, this will yield the weight function
w(r,Lmax) = 4πr2. Substituting the function w(r,Lmax) in the expres

(23)

(24)
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sion of KB integrals of KB integrals of finite subvolumes (Eq. (13)),
one arrives at the expression of KB integrals truncated to finite dis-
tances of Eq. (10). Therefore, truncated KB integrals correspond to the
nonphysical case of finite-size KB integrals (Eq. (9)) with subvolumes
V and zero surface area [38].

3.3. Direct extrapolation of to the thermodynamic limit

To estimate KB integrals for an infinite system, the scaling of GV

(Eq. (13)) with 1/L is extrapolated to the limit L→∞. However, using
linear extrapolation to estimate the values of can result in numer-
ical errors and, for some systems, a linear regime may be difficult to
identify. Hence, it would be advantageous to have an expression that
provides directly using RDFs computed from simulations of finite
and closed systems. Recently, Krüger and Vlugt [34] proposed the fol-
lowing general extrapolation formula

where uk(r) is a weight function that takes into account the finite-size
effects of GV. The subscript k, in G and u(r), refers to the different
forms of u(r) and different levels of approximation. It will be shown
that the function uk(r) may depend on the integration boundary Lmax.
In Ref. [34], three functions are considered. The easiest estimation of
G∞ is obtained from

Substituting u0 in Eq. (25) results in the truncated KB integrals (Eq.
(10)), which is known to yield poor estimates of KB integrals in the
thermodynamic limit. A better way of estimating KB integrals in the
thermodynamic limit, is to take the derivative of Eq. (13) with respect
to the integration boundary, and extrapolate it to the limit 1/L→0 [35].
The final result is,

where x = r/Lmax. The function u1(r) is zero when x = 1. The third es-
timate of uk(r) is based on the scaling of GV with 1/L as well as the
universal expression of the function w(r,Lmax) (Eq. (24)) [34]. As dis-
cussed earlier, KB integrals of finite volumes scale with A/V or 1/L,

The expansion above ignores terms of order (1/L)2 or higher.
Krüger and Vlugt [34] have demonstrated that one can obtain the sur-
face term, F∞, with the knowledge of the function w(r,Lmax) for all
shapes (Eq. (24)). Using Eq. (1) and Eq. (13) for G∞ and GV, respec-
tively, in combination with Eq. (24) yields an explicit expression for

the surface term,

The integral in the surface term is similar to the expression of KB
integrals of infinite volumes (Eq. (1)), but now with [g(r) − 1] re-
placed by ( − 3/2r)[g(r) − 1]. Hence, the methodology to estimate KB
integrals of finite subvolumes can be used to find a suitable estimate
of the surface term [34],

From Eqs. (30), (28), and the function w(r,Lmax) of a sphere (Eq.
(14)), a new weight function can be derived and used to find KB in-
tegrals in the thermodynamic limit from knowledge of RDFs of finite
systems [34],

Note that the function u2(r) and its derivative vanishes at x = 1.
This is shown in Fig. 5a, where the weight functions u0(r), u1(r) and
u2(r) are plotted. Krüger and Vlugt [34] derived a finite-range inte-
gral (Eq. (25)) to estimate KB integrals of infinite systems. The qual-
ity of the estimation depends on the weight function, uk(r). While this
mathematical solution was derived for the problem of KB integrals,
it is valid for the estimation of similar integrals of infinite distances.
The proposed estimate discussed above, u2(r), was derived for any
shape of the subvolume in 3D. In Ref. [91], the approach of Krüger
and Vlugt [34] was extended to higher dimensions.

In Fig. 6, a guide on how to compute KB integrals from molecular
simulations using the method of Krüger and co-workers [34,35,37,38]
is provided. It is shown in this section that it is possible to compute
G∞ in four different ways:

1. From truncated KB integrals, G0 (Eqs. (25) and (26)).
2. From numerically extrapolating KB integrals of finite subvolumes

GV (Eq. (13)) to the thermodynamic limit.
3. Using the analytical extrapolation G1(Lmax) (Eqs. (25) and (27)),

derived form the slope of GV vs 1/L.
4. Using the analytical extrapolation G2(Lmax) (Eqs. (25) and (31)),

based on the scaling of GV and Eq. (24).
In Fig. 5b, a comparison between the four methods to compute KB

integrals is shown. We have created a python package to calculate
those integrals [92]. RDFs used to compute KB integrals in Fig. 5b
were computed from MD simulation of a binary WCA fluid [87] and
we corrected the RDFs to the thermodynamic limit with the correc-
tion of Ganguly and van der Vegt (Eq. (17)). Fig. 5b shows that all
estimates of G∞ lead to the same value in the limit 1/L→0. How-
ever, the truncated integrals, G0(Lmax), results in very large oscilla-
tions when compared to the other KB integrals. This means that it is
almost impossible to obtain G∞ using Eq. (10) using simulations of
small systems. The large oscillations of the integrals G0(Lmax) can be

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Fig. 5. (a) The weight functions uk(r) discussed in section 3.3 to estimate KB integrals
in the thermodynamic limit. (b) KB integrals, G11, versus 1/L from direct extrapolation
(Eq. (25)) as well as from the expression of KB integrals of finite subvolumes (Eq. (13)).
Green dashed lines indicate extrapolation to the thermodynamic limit. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

attributed to oscillations of g(r), which are amplified when performing
the integration in Eq. (10). The integrals G1(Lmax) and G2(Lmax) result
in smoother oscillations, while the function GV results the smoothest
lines as it scales with 1/L. The integrals G1(Lmax) and G2(Lmax) scale
with 1/L3 as indicated by the leading terms of the weight functions
u1(r) and u2(2), Eqs. (27) and (31) respectively. As expected from
Ref. [34], G2(Lmax) provides a very smooth convergence when com-
pared to G0(Lmax) and G1(Lmax). This can be explained by the weight
functions uk(r) and their behaviour in the limit x = r/Lmax = 1. Fig. 5a
shows that, for a subvolume with Lmax = 1σ, the functions u1 and u2
have the value of zero at r = 1σ (i.e. x = 1), unlike the function u0. As
a result, we can conclude that the integrals G2(Lmax) and the numerical
extrapolation of GV provide the most accurate estimate of KB integrals
in the thermodynamic limit.

4. Other methods for estimating KB integrals in the
thermodynamic limit

In the previous section, the method by Krüger and co-workers
[34,35,37,38] to formulate expressions of KB integrals of finite sub-
volumes was discussed. We showed that this approach provide inte-
grals that converge smoothly to KB integrals of an infinite system. Be-
sides the approach presented in section 3, a number of methods are
available in literature to compute KB integrals from molecular simu-
lations of finite systems. Here, some of these methods are discussed.

The approach of Cortes-Huerto et al. [36] is the very similar to the
method of Krüger and co-workers [34,35,37,38] (section 3). An ex-
pression was derived relating KB integrals of finite subvolumes to
KB integrals of infinite systems, . Cortes-Huerto et al. [36] com-
puted from fluctuations in the number of molecules (R.H.S of Eq.
(9)). In principle, KB integrals of finite subvolumes can be com-
puted from integrals of RDFs as well. Cortes-Huerto et al. [36] apply
corrections to compensate for two finite-size effects: (1) RDFs-related
effects and, (2) boundary or surface effects. For the first effect, the
correlation of Eq. (22) is used to estimate RDFs in the thermodynamic
limit. The RDF correction used in the work of Cortes-Huerto et al.
[36] (Eq. (22)) is discussed in section 3.1. For surface effects, resulting
from computing fluctuations inside small subvolumes, Cortes-Huerto
et al. [36] adopt the same scaling approach of Krüger et al. [35] where

scales with A/V, which equals 1/V1/3 in 3D. Including the two cor-
rections in the definition of of Eq. (9) leads to a final working ex-
pression where is written as a function of (V/Vbox)1/3,

Cαβ is a constant originating from the scaling of with A/V, and it
is specific to each thermodynamic state. From the slope of the line of

vs. (V/Vbox)1/3, KB integrals of infinite systems are found.
The methods of Krüger and co-workers [34,35,37,38], and

Cortes-Huerto et al. [36] provide practical approaches to computing
KB integrals for any isotropic fluid, while addressing system size ef-
fects and RDF-related effects. Other available methods for comput-
ing KB integrals are more complicated, and found to be difficult to
extend to systems with internal degrees of freedom. Wedberg et al.
[59,93] presented a method for extending KB integrals to the thermo-
dynamic limit using Verlet's extension method [90]. The Verlet exten-
sion method [90] can be applied to estimate RDFs beyond the size of
the finite simulation box, which are then used to extrapolate to KB in-
tegrals to the thermodynamic limit, by truncating Eq. (1) to a value
much larger than half the box size. The approach of Wedberg et al.
[59] was verified using pure LJ and Stockmayer fluids. A drawback of
this approach is the complexity of the numerical procedure. Moreover,
it is not trivial to extend the method to systems of molecules with in-
tramolecular degrees of freedom.

KB integrals can be computed from molecular simulations of fi-
nite number of molecules using static structure factors [58,60]. The
structure factor of a liquid, S(q), is related to the Fourier transform
of pair distribution functions, and q is the magnitude of change of a
reciprocal lattice vector. Structure factors can be measured from scat-
tering experiments, where q is a function of the wave length and the
scattering angle. At the zero wavelength limit, q = 0, structure factors

(32)
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Fig. 6. A guideline for computing KB integrals using the method of Krüger and co-workers [34,35,37,38].

are directly related to KB integrals [94,95]. However, the values of
S(q = 0) cannot be measured directly. Similarly, with molecular simu-
lation, structure factors can be computed for a set of values of q, and
then extrapolated to the limit q = 0 to find KB integrals. In the work
of Nichols et al. [58], structure factors are computed from fluctuations
in the number of molecules of finite systems. Each lattice vector q,
corresponds to a set of different sampling volumes, or sub-cells in-
side the simulation box, from which the density fluctuations are com-
puted. Rather than considering subvolumes formed by a central mol-
ecule, Nichols et al. [58] considered fluctuations in slab-like regions
that resulted from dividing the simulation box. As a result, the whole
volume is considered and all the information is used. From fluctua-
tions, written as a 3D Fourier series, structure factors are computed
and this was used to obtain the thermodynamic properties that relate
to KB integrals (partial deviates of chemical potential with respect
to composition, molar volumes, and isothermal compressibility). For
a LJ fluid, Nichols et al. [58] found it difficult to extrapolate struc-
ture factors to q = 0. Instead, thermodynamic properties computed
from subcells (i.e specific range of q) were extrapolated to the limit
q = 0. Extrapolation of thermodynamic properties is needed to rem-
edy finite-size effects. While the method of Nichols et al. [58] provide
accurate thermodynamic properties, compared to truncated KB inte

grals, it is computationally involved even for systems with no in-
tramolecular interactions. Structure factors are also used in the work
of Rogers [60] to compute KB integrals from simulations of closed
and finite systems. As in the work of Nichols et al. [58], information
from the entire volume of the simulation box was used. However, both
methods were applied to compute KB integrals of systems of mole-
cules with no intramolecular degrees of freedom such as LJ fluids.

5. Thermodynamic properties of small systems

In section 3, we discussed the method of Krüger and co-workers
[34,35,37,38] for computing KB integrals from molecular simulation.
This approach applies a similar concept to that of the SSM discussed
earlier (section 2). In both approaches, the desired property is com-
puted in the thermodynamic limit from finite and small subvolumes
embedded in a larger reservoir (i.e. simulation box). Since open and
small subvolumes can be of the order of a few molecular diameters,
thermodynamics of small systems applies. In this section, the basics
of thermodynamics of small systems are presented. Classical, or bulk,
thermodynamics will be referred to as standard thermodynamics.
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5.1. A small system with constant μ, V and T

The starting point is a small and open subvolume embedded in a
reservoir (for example: see Fig. 1b) [85,96]. As discussed earlier, this
set up can be treated as grand-canonical. For the sake of simplicity, we
will only present the case of pure component systems, as the extension
to multi-component system is presented in the book of Hill [86]. Un-
der these conditions, as we have seen from Eq. (9), KB integrals are
directly related to the density fluctuations. Another important quantity
that directly relates to these fluctuations and then to KB integrals is the
thermodynamic factor, Γ (see Eq. (8) for a binary system). Following
standard thermodynamics, for a single-component system Γ provides
the evolution of the chemical potential with a density change. Using
standard statistical thermodynamics one can easily show that in the
thermodynamic limit, the density fluctuations in the μVT ensemble are
proportional to Γ of a pure component,

where 〈N〉 is the average number of particles in the subvoume and
β = 1/(kBT) with kB being Boltzmann constant. For finite volumes,
Γ − 1 scales linearly with A/V beyond a few molecular diameters, as
KB integrals [35,37,47]:

where C is a constant and is the value of Γ − 1 in the thermody-
namic limit (A/V→0). The density fluctuations of Eq. (33) can then
be considered as a sum of two contributions: a volume term (
) and a surface term (ACρ with ρ = 〈N〉/V). Keeping in mind that the
density, on average, is the same everywhere, ACρ can be understood
as an excess fluctuation term that becomes negligible compared to

as the size of the subvolume increases.
As described in Refs. [85,96], this implies that the grand-canonical

partition function of this system also has an extra surface term com-
pared to its standard expression in the thermodynamic limit. In that re-
spect, thermodynamic properties like Γ − 1 are no longer intensive, like
in the thermodynamic limit, according to Gibbs’ thermodynamics of
heterogeneous systems. This result, which also applies to KB integrals
as described above, clearly illustrates that standard thermodynamics
does not apply to small systems. Here, this result was obtained from
simulations and statistical mechanics. Hill [86] arrived at a similar re-
sult from a thermodynamic derivation.

In the 1960's, Hill proposed a systematic extension of standard
thermodynamics to small systems, also called nanothermodynamics
[57,97]. Considering an open and small system, Hill showed that the
pressure is no longer intensive. To differentiate from classical pres-
sure, the pressure of a small system will be referred to as . For a
grand-canonical ensemble, is a function of the grand-canonical par-
tition function of the small system, Ξ:

This expression is very similar to that provided by classical statis-
tical mechanics except for the instead of p. Like for Γ − 1, it follows
directly that the change in the grand partition function due to the sur-
face contribution originates from the difference between p and . In
the next section, we will see how Hill introduced in thermodynamic
relations and how it is used to extend the thermodynamics to small and
open systems.

5.2. Basic relations for a small system with constant μ, V and T

Hill [57] considered replicas of the small system, constructing
thereby an ensemble (the total system), which is large enough to fol-
low the laws of standard thermodynamics. The Gibbs’ equation for
this new ensemble is then:

subscript t refers to the total system, and the symbol E is used for in-
ternal energy, S for entropy. For convenience, we define

which can be interpreted as the reversible work needed to add one
replica of the small system at constant St, V and Nt. The addition of a
replica at constant St, V and Nt, implies that St and Nt have to be redis-
tributed over one more replica. By integrating Eq. (36) at constant T,
V, μ and X, we obtain:

where T and μ are determined from the values of these quantities in
the reservoir. The average variables of the small system are related to
the variables of the total system by:

where the brackets are used to denote averages of a single
replica. The entropy S is determined by the probability distribution
over N and E, which is the same for each replica [86]. By introducing
the variables for the small system into Eq. (38), we obtain:

in which we used the definition [57]. The small system can
be described by standard thermodynamics if . The system can be
considered small when , as may deviate significantly from p
because of the effective surface energy of the system. The correspond-
ing Gibbs-Duhem equation in this particular case is

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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or

The relation between and the partition function proposed by
Hill, Eq. (35), allows us to derive thermodynamic properties. We can
then derive p, 〈N〉 and the thermodynamic correction factors, Γ, from

The first two quantities are special for small systems as they re-
quire partial derivatives of . It should be pointed out that the den-
sity 〈N〉/V obviously does not exhibit any small volume effects as was
shown from molecular simulations. Only the second derivative of

with the chemical potential shows a size dependence and also the
fluctuation around 〈N〉. By this thermodynamic derivation, we have
shown that results of Γ − 1 obtained from finite subvolumes could be
interpreted in the context of the thermodynamics of small systems
(Γ − 1 is no longer an intensive property). Bedeaux, Kjelstrup and
co-workers [47,98] have shown that this size effect can also be ex-
plained using Gibbs' thermodynamics of surfaces. This illustrates the
equivalence between Hill's thermodynamic, Gibbs' surface thermody-
namics and the Kirkwood-Buff approach.

6. Applications of KB integrals from molecular simulation

6.1. Partial molar enthalpies

In Ref. [6], Schnell et al. proposed a method to compute partial
molar enthalpies from molecular simulation in the canonical ensem-
ble. Following the SSM, enthalpies of small subvolumes embedded
in a larger reservoir are used. From nanothermodynamics, an expres-
sion for the change of with respect to the average number of mole-
cules 〈Nα〉 was derived in terms of fluctuations in density and energy,

in which E is the energy of the subvolume. As shown in the previ-
ous section, properties of small subvolumes scale with the inverse size
of the subvolume (1/L). Extrapolating the derivatives of Eq. (46) to
the thermodynamic limit yields partial enthalpies at constant volume

. To find partial molar enthalpies in the grand-canon-

ical ensemble, , a Legendre transform was performed.

To convert from enthaplies in the canonical ensemble to partial mo-
lar enthalpies in the grand-canonical ensemble, KB integrals of the
studied system are needed. The method of Krüger and co-workers
[34,35,37,38] of KB integrals for finite subvolumes was used. Addi-
tionally, this approach was applied by Skorpa et al. [99] to compute
the heat of reaction of a dissociation H2 using a reactive force field.

6.2. Properties of single-ions in salt solutions

Simulating closed and finite systems to compute KB integrals has
the advantage of accessing single-ion properties [41]. Essentially, to
apply the KB theory to a salt solution, the system has to be treated
as a binary mixture where ions are indistinguishable [9], as shown in
Ref. [16]. In this case, relations between KB integrals and thermody-
namic properties of binary mixtures, presented in section 2, can be ap-
plied. For a ternary mixture of a dissociating monovalent substance (
AB→A + B) and a solvent (e.g. water, W), KB integrals are subject to
the following electroneutrality conditions,

where ρ is the number density of the salt (ρA = ρB =ρ). Eqs. (47),
(48) and (49) imply that the number of molecules of species A and B
cannot be varied independently. Ben-Naim [9] showed that the above
constrains introduce a singularity to the equations relating KB inte-
grals, , to thermodynamic quantities. It is important to note that
the KB theory is general for any type of interactions and the issue of
singularity is not due to the strong electrostatic interactions present
in salt solutions. Rather, it is a result of the closure constraints im-
posed by Eqs. (47), (48) and (49), and it does not apply to KB inte-
grals defined in open systems [8]. Eqs. (47), (48) and (49) hold for
any dissociating molecule AB where the number of molecules has to
be conserved simultaneously in the system, i.e. NA = NB. The approach
of using KB integrals of finite subvolumes of Krüger and co-work-
ers [34,35,37,38] (section 3) allows KB integrals of single ions to be
computed from simulations in the canonical ensemble with open sub-
volumes embedded in the simulation box. As a result, the charge neu-
trality of the reservoir is maintained (NA = NB), while the electroneu-
trality condition is not applied inside the subvolume, and therefore the
grand-canonical ensemble is accessed. In the work of Schnell et al.
[41], KB integrals of a sodium chloride (NaCl) solution were com-
puted to find molar volumes of water, Na + , and Cl − . The partial mo-
lar volumes of one of the salt ions can have a negative value [41].
In Ref. [100], a similar observation was reported when computing

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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molar volumes of Na + and Cl − . The authors of Ref. [100] investi-
gated the possibility of computing single-ion properties using molecu-
lar simulations by considering two methods. The first method is based
on the changes in average potential energy and box volume when in-
serting an ion into a pure liquid, while the second method depends on
evaluating the reversible work associated with inserting an ion into the
a liquid.

6.3. Mass transfer in multicomponent liquids

KB integrals computed from molecular simulation can be applied
to connect Fick diffusion coefficients to Maxwell- Stefan (MS) dif-
fusivities. The generalized Fick's law relates the molar flux, Ji, to the
Fick diffusivity, Dij [72,101],

where ct is the total molar concentration and ∇xj is the mole fraction
gradient, which is the driving force in Fick's law. MS diffusivities can
be predicted from MD simulations and Fick diffusivities can be mea-
sured by experiments [40,72,101]. The MS diffusivity can be consid-
ered as an inverse friction term in an equation where the gradient in
chemical potential is related to differences in the average velocities
between species:

where (ui − uj) is the difference between the average velocities of the
components. As chemical potentials cannot be measured directly, it is
not possible to directly compare MS diffusivities to experiments. It is
more convenient to compute MS diffusivites using molecular simula-
tion. Fick diffusivities often depend more strongly on concentration
than MS diffusivities [40,101]. Moreover, it is possible to predict dif-
fusion of multicomponent mixtures (n > 2) from the knowledge of MS
diffusivites of a binary mixture [39,40,66]. For a mixture with more
than two components, Fick diffusivities depend on the type of refer-
ence frame, unlike MS diffusivities [40,101]. Fick diffusivities and the
thermodynamic factor can be used to compare MS diffusivites with
experimental data [72],

where [D] is the Fick coefficients matrix. The elements of the matrix
[B] can be found using,

while the elements of the matrix [Γ] can be expressed as a function of
KB integrals. The relation between Γij and KB integrals is provided by
Eq. (8) for binary systems. The thermodynamic factors are provided
for ternary mixtures can be found in Refs. [9,39]. In Refs. [39,40],
KB integrals from simulations of finite systems were computed using
the approach of Krüger and co-workers [34,35,37,38] (section 3). KB
integrals of binary and ternary mixtures were used to compute ther-
modynamic factors and convert MS diffusivities obtained from sim-
ulations to Fick diffusivities measured by experiments. The proposed
method was applied to binary and ternary alcohol mixtures [39,40].

In Ref. [52], it was shown that KB integrals can be used to correct
finite-size effects of computed MS diffusion coefficients. MS diffu-
sion coefficients are dependent on the size of the simulated system,
and these finite-size effects were found to originate from hydrody-
namic interactions [52,102]. In the study of Jamali et al. [52], a cor-
rection based on viscosity, and the thermodynamic factor was used
to compensate for this effect. For binary and LJ mixtures, KB inte-
grals were obtained from molecular simulation and used to compute
thermodynamic factors. The finite-size correction was applied to mol-
ecular systems such as organic fluids. Jamali et al. [52] found the fi-
nite-size effects of MS diffusivites to be significant, especially when
thermodynamic factors approach zero (i.e when mixtures are close to
demixing).

6.4. Other applications

In section 1, we presented the relations that link KB integrals to
partial derivatives of the chemical potential with respect to the number
of molecules (Eq. (3)), partial molar volumes (Eq. (4)), and isother-
mal compressibilities (Eq. (5)) for binary systems. Based on these re-
lations, other properties can be estimated from KB integrals. Galata
et al. [103] used the KB theory to compute thermodynamic mixing
properties and excess properties of liquid mixtures. In their work, the
authors focus on computing partial derivatives of chemical potential
with composition and the Gibbs energy of mixing, ΔmixG, which are
important quantities for the prediction of phase equilibria of liquid
mixtures. The prediction of ΔmixG and other mixing properties from
KB integrals was validated using binary ideal and real LJ mixtures
[103]. The KB integrals were found using simulations of finite vol-
umes, and finite-size effects were corrected using the approach of
Cortes-Huerto et al. [36] (discussed in section 4).

KB integrals can be used to interpret findings from simulations of
biological molecules. In Ref. [31], Pierce et al. presented a review of
the applications of the KB theory to biological systems. One of the
valuable applications of the KB theory is to study the effects of co-sol-
vents on biomolecules. Molecular simulation provide local informa-
tion on the cosolvents surrounding biomolecules and how such an en-
vironment affects the structure of biomolecules [29,31,104–106]. In
2004, Smith [29] demonstrated how KB integrals can be used to re-
late simulation results which provide preferential interaction to macro-
scopic thermodynamic data [107]. Other than studying solvents sur-
rounding biomolecules, the KB theory can be applied directly to sys-
tems with interacting biomolecules. However, this application can

(50)

(51)

(52)

(53)
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be hindered by difficulties associated with sampling the phase space
of such systems.

KB integrals can be used for the development and parameteriza-
tion of force fields [61,108,109]. Weerasinghe and Smith provide KB
derived force fields (KBFF) for a number of mixtures such as, sodium
chloride in water [108], urea and water [110], acetone and water [111],
and methanol and water [112]. The force fields were parameterized
so that KB integrals obtained from experimental data are reproduced
(more on the use of experimentally obtained KB integrals are provided
in section 7).

The authors of Refs. [61,108,109] found that macroscopic proper-
ties can be accurately computed using the KBFF models, while ad-
dressing solute-solute and solvent-solute molecular structure of the
systems considered. For instance, in Ref. [61] the derived KBFF was
able to reproduce microstructure of alkaline earth halide salts in water.
Ion-ion and ion-water distances provided by the force field were found
to agree with those measured by neutron scattering experiments. The
same KB force field yielded satisfactory prediction of several macro-
scopic quantities including molar volumes, and partial derivatives of
chemical potential with respect to density. Mijaković et al. [113] com-
pared several force fields, including KBFF, for ethanol-water mix-
tures. The authors reported that the KB derived force field performed
better than other force fields when computing KB integrals and sev-
eral thermodynamic properties including: excess volumes, excess en-
thalpy, and self-diffusion coefficients.

7. Inversion of the KB theory

In previous sections, we showed how KB integrals are used to
compute several thermodynamic properties of multicomponent liq-
uids. Before molecular simulation were used to compute KB integrals,
experimental data were used to obtain KB integrals. This approach is
referred to as the inversion of the KB theory [9,11]. In this section we
will briefly discuss the inversion procedure, and some of its applica-
tions.

For a binary mixture with components α and β, molar volumes, the
isothermal compressibility, and partial derivatives of chemical poten-
tial with respect to number of molecules are related to KB integrals

, and (Eqs. (4), (5), and (3)). Moreover, the Gibbs-Duhem
relations apply to these thermodynamic quantities,

where and are the partial molar volumes of components α and
β, respectively. Using Eqs. (3)–(5) and (55), Ben-Naim [11] derived
the following expression for KB integrals of binary mixtures,

where the isothermal compressibility κT and molar volumes and

are obtained from experiments. The term can be ob-

tained using second derivatives of the Gibbs excess energy, or experi-
mental vapor pressure data [9]. In Refs. [71,114], equations for KB in-
tegrals in terms of thermodynamic properties were derived for ternary
mixtures.

Ben-Naim [11] introduced the inversion procedure in 1977 and ap-
plied it to a mixture of water and ethanol. For water (W) and solute
(S) systems, it was shown that KB integrals obtained from experimen-
tal data are useful to study several local phenomena: (1) the quantity

indicates the affinity between the solvent and the solute;
(2) KB integrals of water, , reflect the water-water affinity, which
can be used to study the changes in the molecular structure of water
when adding solutes; and (3) KB integrals of solutes, , are of par-
ticular interest for studying hydrophobic interactions.

Following the paper of Ben-Naim [11], the inversion of the KB
theory was applied to study various types of binary and ternary mix-
tures at the molecular level [15,115–123]. For instance, Patil [119]
computed KB integrals of water-butanol mixtures from experimen-
tal data of molar volumes, isothermal compresibility, and vapor pres-
sures. KB integrals of the system considered were used to study lo-
cal structure at various concentrations. Similarly, Matteoli et al. [118]
used molar volumes and isothermal compresibility of mixtures of wa-
ter and different organic co-solvents to find KB integrals. The KB in-
tegrals obtained from the inversion procedure were taken as a mea-
sure of the net attraction or repulsion, indicating the hydrophobicity of
these mixtures. More recently, Kobayashi et al. [124] used KB inte-
grals to study properties of residual water in ionic liquids. The authors
found that the values of KB integrals computed using molecular sim-
ulation agree with integrals obtained from experimental data. How-
ever, the inversion of the KB theory requires the partial derivatives,

, which are difficult to obtain accurately from experi-

mental data [125]. Matteoli et al. [118] demonstrated how the accu-
racy of KB integrals obtained from experimental data is very sensitive
to uncertainties in partial derivatives of the chemical potential. Alter-
natively, KB integrals can be obtained from fluctuations in number of
molecules measured by angle scattering [19] such as SANS and SAXS
[17–19,21,22,95]. Perera et al. [23] examined a number of water-alco-
hol mixtures using KB integrals and demonstrated that both methods
are reliable and should provide similar values of KB integrals. In their
study, Perera et al. [23] pointed out possible sources of errors leading
to inaccurate KB integrals when using experimental data. For instance,
the largest differences between the two methods were observed at the

range where the values of the term in Eq. (56) is close

to zero. Furthermore, Almásy et al. [126] obtained KB integrals from
SANS as well as from vapor pressure data for an ionic liquid. The au-
thors found that scattering experiments and thermodynamic data pro-
vided similar KB integrals.

8. Conclusions

The KB theory provides a solid connection between the micro-
scopic structure of isotropic liquids and their thermodynamic proper-
ties, such as partial derivatives of chemical potential with respect to
the number of molecules, isothermal compressibility, and partial mo-
lar volumes. The key quantities in the KB theory are the KB integrals
which are expressed as volume integrals over the radial distribution
function. Although developed more than 60 years ago, the theory did

(55)

(56)
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not gain mainstream interest until Ben-Naim [11] derived the inver-
sion of the KB theory, where experimental data are used to compute
KB integrals. Only in the past few decades the KB theory has been
applied to predict thermodynamic properties, mostly by using molec-
ular simulation to compute KB integrals. However, molecular simu-
lation cannot be applied directly to compute KB integrals of infinite
and open systems. To connect RDFs and fluctuations of small sys-
tems to KB integrals, several methods have been proposed. One of
the most practical approaches was derived by Krüger and co-work-
ers [34,35,37,38], where KB integrals of finite subvolumes, that scale
with the inverse size of the subvolume, were derived and then extrapo-
lated to the thermodynamic limit. A python package was created to au-
tomatically compute the finite-size KB integrals from RDFs (see sup-
plemental information). This and the other methods that we have re-
viewed here, provide a tool to compute KB integrals of infinite and
open subvolumes from simulations of finite systems. From computed
KB integrals, various thermodynamics properties can be predicted and
used in different applications, which include: predicting properties of
single ions in salt solutions, connecting Maxwell-Stefan diffusivities
obtained from simulations to Fick diffusivities measured by experi-
ments, and deriving force fields. The KB theory is a general theory
and in principle applies to all isotropic fluids, regardless of the mole-
cular interactions involved. KB integrals were computed for different
types of binary and ternary fluids including aqueous alcohol mixtures,
salt solutions, and solvents present in biological systems. Difficulties
may arise when applying the KB theory for biomolecules and macro-
molecules as sampling of the phase space can be challenging. Many
molecular systems were studied using KB integrals computed simply
by truncating the infinite volume integrals introduced by Kirkwood
and Buff to finite distances. As shown in this work, truncated integrals
do not converge easily and such truncation does not provide the same
information as KB integrals in the thermodynamic limit. In fact, trun-
cated integrals correspond to the nonphysical case of subvolumes with
zero surface area. Currently, several methods are available to compute
KB integrals accurately, and this opens the way to expand the applica-
tions of KB theory to real fluids, especially to systems where complex
interactions are present and computing thermodynamic properties is
challenging. Additionally, it would be interesting to explore the possi-
bilities of computer simulations on KB integrals of non-isotropic flu-
ids.
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