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     Density functional theory for surface science,    
Auger spectroscopy and simple thermodynamics
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Outline 

1) What is density functional theory ?
→ Examples of recent work with Yamada group

2) Theory of resonant Auger electron spectroscopy + diffraction

3) Basic physical chemistry. Thermodynamic information from the 
pair correlation function / structure factor



  

First-principles calculations / density functional theory

Nowadays, the structural, dynamic, electronic, magnetic, optical properties 
of most materials can be calculated “from first principles”, that is without 
input from experiment 

Start from some structural model (and refine it later if necessary)

calculate the electronic state: molecular orbitals / bonds in a molecule,
electronic band structure in a solid

→ use density functional theory (or Hartree-Fock or ..) 
→ solve Kohn-Sham (~Schrodinger) equations
→ molecular orbitals / bands, electronic (and spin) density,  total energy.

→ once the electronic state is known, many chemical, optical and transport 
properties can be understood.
 
→ forces between atoms
→ find equilibrium atomic structure by “structural optimization”:
    move atoms along forces until all forces are zero.
→ compute atomic dynamics, vibrational spectra etc



  

Well-ordered monolayer growth of Crown-Ether ring molecules on Cu(111) 
in ultra-high vacuum: a STM, UPS and DFT study, Ryohei Nemoto, Peter 
Krüger, Ayu Novita Putri Hartini, Takuya Hosokai, Masaki Horie, Satoshi Kera 
and Toyo Kazu Yamada, J. Phys. Chem. C 123, 18939-18950 (2019)

Direct Imaging of Precursor Adcomplex States during Cryogenic-
Temperature On-Surface Metalation: Scanning Tunneling Microscopy 
Study on Porphyrin Array with Fe Adsorption at 78.5 K
Eiichi Inami, Masataka Yamaguchi, Ryohei Nemoto, Hideki Yorimitsu, Peter 
Krüger, and Toyo Kazu Yamada, J. Phys. Chem. C 2020, 124, 3621

Carbon Monoxide Stripe Motion Driven by Correlated Lateral Hopping in 
a 1.4 × 1.4 Monolayer Phase on Cu(111), 
Nana K. M. Nazriq, Peter Krüger, Toyo Kazu Yamada, J. Phys. Chem. Lett. 
2020, 11, 5, 1753



基板 銅Cu(111)

単層→2次元のテンプレートのテンプレートテンプレート

有機分子ののテンプレート2次元のテンプレート構造
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理論計算



基板シミュレーションモシミュレーションモ
デル



計算結果　安定な構造な構造構造

Well-ordered monolayer growth of Crown-Ether ring molecules on Cu(111) in ultra-high 
vacuum: a STM, UPS and DFT study,

Ryohei Nemoto, Peter Krüger, Ayu Novita Putri Hartini, Takuya Hosokai, Masaki Horie, Satoshi Kera and Toyo Kazu Yamada, 

J. Phys. Chem. C 123, 18939-18950 (2019)
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Direct Imaging of Precursor Adcomplex States during Cryogenic-Temperat
ure On-Surface Metalation: Scanning Tunneling Microscopy Study on Porp
hyrin Array with Fe Adsorption at 78.5 K
Eiichi Inami, Masataka Yamaguchi, Ryohei Nemoto, Hideki Yorimitsu, Peter Krüg
er, and Toyo Kazu Yamada, J. Phys. Chem. C 2020, 124, 3621





Computed STS spectra (electronic density of states)



Carbon Monoxide Stripe Motion Driven by Correlated Lateral Hopping 
in a 1.4 × 1.4 Monolayer Phase on Cu(111), 
Nana K. M. Nazriq, Peter Krüger, Toyo Kazu Yamada, J. Phys. Chem. Lett. 2020, 11, 5, 1753



First real space evidence 
of 1.4 x 1.4 structure

stripe formation and 
stripe motion explained 



  

(2) Theory of resonant Auger electron 
spectroscopy / diffraction

Application to Ni(111)

→ Daimon effect with reversed angular momentum 
transfer



  

Principle of photoelectron diffraction

Interference between primary and scattered waves 

→ intensity modulation as function of angle  =  diffraction pattern 

→ information about local structure around emitter species



- X-ray photoelectron diffraction → geometrical structure 
- X-ray absorption → element selective information on unoccupied states
- valence photoemission → occupied states

Resonant valence band photoemission / Auger-electron diffraction

→ element and site-specific electronic structure 

- easy to do on modern synchrotron sources
- rarely reported … difficult to understand… no calculation method available

Resonant Photo-/ Auger-Electron Diffraction

resonant photoemission = participator Auger



  

Exp. Na/TiO2
Simple PED calculation 

Ti 2p-3d resonant photoelectron diffraction from in-
gap state of TiO

2
(110) 

O-vacancy TiO2

P. Krüger et al, 
PRL 108 (2012) 126803



  

Resonant Auger electron 
diffraction from Ni(111)

F. Matsui et al, PRB 97, 035424 (2018)

Circular dichroism around forward scattering peak 
(Daimon effect)

Auger electron angular momentum 
as photon (L3M45M45) 
or reversed (L3M23M45 triplet)
  



  

θ

R

hν

e

Δ

azimuthal rotation of forward focusing peak
→can be used for stereoscopic microscopy of
 3-dimensional atomic structure

k

X-ray photoelectron diffraction with circular polarized light
Light angular momentum transferred to photo-electron m = <L

z
>

Daimon effect

H. Daimon, PRL 86, 2034 (2001)



  

ħωω
q=+1 
helicity

e

θ

initial shell      <ml>  photo-el.

      s                  1 
    p,d,f            > 0

Angular momentum transfer in direct photoemisson

Electric dipole transition  
ΔLz = q    ΔSz = 0 

↑↓

ΔLz = +1

photon
q = +1

1s

continuum 
p 

ml -1 0 1

↑↓

↑↓

initial state final state 

ml = q = +1

→ positive AM transfer



  

 valence

4s  

↑↓ ↑↓ ↑↓
-1 0 1

↑↓

core 

2p

ml

↑↓ ↑↓ ↑↓
-1 0 1

↑↓

↑↓ ↑↓ ↑↓
-1 0 1

↑↓

Angular momentum transfer in resonant photoemisson

ml = +1 

photo-
electron 

photon
q = +1

Auger decay (Cb)

ΔLz =ΔSz = 0 

ΔLz = +1

here:           full AM transfer from light to photoelectron, same as direct 4s-PES
in general:  partial AM transfer to photoelectron and to valence electrons 
                   photoelectron AM depends on valence final state



  

X-ray
absorption

Auger 
decay

Ground 

   3d9

Intermediate

 2p5 3d10

   Final

3d8  +   Auger e

Resonant L3M45M45 Auger emission of 3d9 atom

3d

2p1/2

2p3/2



  

Resonant photoemission calculation method

I (ω ,ϵ)=∑F|⟨F (ϵ)|T opt|G ⟩+∑M

⟨F (ϵ)|T AI|M ⟩ ⟨M|T opt|G⟩

ℏω+EG−EM−iΓM /2 |
2

δ(ℏ ω+EG−EF)

Second order perturbation theory (Kramers-Heisenberg)

Diffraction calculation:

A →  multiple scattering code EDAC [Garcia de Abajo]
 

Resonant photoelectron amplitudes computed in atomic multiplet model



  

term 
multiplicities

1

9 9
5

21

on resonance

F. Matsui et al , Z. Phys. Chem 230, 
519 (2016)

Experiment  (Cu)

ResPES spectrum of Ni+ ion (3d9) in multiplet calculation

(d8) final state

2p, 3d shells
Coulomb + S.O. interaction
parameters from
A. Tanaka, T. Jo, JPSJ 1993

off resonance

1G

3P
1D

3F

1S



  

only direct 3d emission 

only 2p3d3d resonant emission process

intensity     
  x 
orbital 
moment 

intensity 

binding energy

Orbital angular momentum of emitted electron 
for q = +1 helicity

     <Lz> ~ 1.9 h 

independent of final state multiplet
always positive AM transfer 

|<Lz>| < 0.5  h    – much weaker

<Lz>  > 0  for dominating 1G

<Lz> < 0 for all other multiplets

 → reversed AM transfer

1G

x 0.5



  

18
66

613

  mj    -3/2  -1/2   1/2   3/2
<Lz>   -1    -1/3   1/3    1

ml   -2      -1      0       1       2 
3d

2p
3/2

q = +1

1. Core-hole alignment

 2p
3/2

→ 3d transition with  q = +1  light helicity 

<Lz> = 5/12 > 0 

3d

2p
3/2

average

- core-hole orbital momentum <Lz> partially aligned (42%) with light helicity

- mj=3/2 (ml=1) hole has largest probability (45%)

Why orbital momentum reversal ?



  

↓↑ ↓↑ ↓↑ ↓↑ ↓↑ 
-2   -1   0 1 2

Why orbital momentum reversal ?

2. Auger decay

  Coulomb interaction 
  total L

Z
 conservation

    
   | d d > → | c e >               

   M(dd)  = m(c) + m(e)

 

If all M equally likely  <M(dd)>=0 

  <m(e)> = 0 - <m(c)>  = - 5 / 12
  on average

→ orbital momentum reversal  
→ occurs for resonant 3F  1D  3P  1S

<Lz>(Auger-el.) opposite to helicity

ΔLz(total) = 0 

↓↑ ↓↑ ↓   
-1 0 1

     
  -3 -2   -1   0 1 2   3

M(dd)=0

m(c)= +1

m(e)= -1



  

↓↑ ↓↑ ↓↑ ↓↑ ↓↑ 
-2   -1   0 1 2

Why orbital momentum not always reversed?

1G multiplet

 two same d-orbitals scatter
 → by far largest intensity
 
M(dd) = 4   →  m(e) = 3  > 0

M(dd) = -4    impossible 
in dominant d→f  channel

<Lz>(Auger-el.) parallel to helicity

→ orbital momentum not reversed

ΔLz(total) = 0 

↓↑ ↓↑ ↓   
-1 0 1

    
  -3 -2   -1   0 1 2   3

M(dd)=4

m(c)= +1

m(e)= 3



  

Comparison with experiment

Total: direct + resonant  
Г=0.7 eV

resonant emission <Lz> < 0 
+ normal emission <Lz> > 0  mostly cancel
except for very dominant 1G



  

1F

1P
3F1D

3P
3D

TripletsSinglets

Γ=0.7eV
on resonance

Experiment

off resonance

Theory

3p3d resonant Auger spectrum



  

only direct 3p emission 

only resonant emission

intensity     
  x 
orbital 
moment 

intensity 

binding energy

orbital angular momentum of emitted electron

     <Lz> ~ 1.4 h 

independent of final state multiplet
always positive AM transfer 

<Lz> < 0 

→ reversed AM transfer for all 

but most intense multiplet line   1F

1F



  

I<L
z
>

I

x 5

normal – reversed – normal 
angular momentum transfer 
in agreement with experiment 

Comparison with experiment

Total: direct + resonant  
Г=0.7 eV



Z-direction

x-direction

 →EDAC code
• Ekin ~ 850 eV
• single scattering
• source waves: 
resonant ResPES 
multiplet amplitudes for 
each final state

G. Park (M2)

Resonant photoelectron diffraction calculation

(101)(101)



  

Circ. Dichroism at diffraction peak

I<L
z
>

I

x 5

normal reversed normal



  

Conclusions
● ResPES spectrum of Ni successfully modeled using multiplet model

● photon to electron angular momentum (AM) transfer occurs in ResPES, but        effect is 

weaker than in non-res PES and strongly multiplet term dependent

● exp. observed reversal of AM transfer in 2p3p3d ResPES fully reproduced

● AM reversal explained by core-hole alignment in 2p-3d excitation and Lz conservation in 

Auger decay  

● ResPE diffraction patterns modeled for the first time by combining atomic multiplet final 

state with Multiple Scattering calculation (EDAC)

● Daimon effect in Res PE diffraction reproduced







Introduction: atomic structure of matter

How do we know the atomic structure of matter?
Diffraction experiments: X-ray, neutrons, electrons

∆x = R · k̂− R · k̂′
∆φ = 2π∆x/λ = R · (k− k′) ≡ −R · q

scattered wave amplitude:
A ∼

∑
i exp(−iq · Ri )

intensity:
I ∼ |A|2 =

∑
ij exp[−iq · (Ri − Rj)]

→ structure factor:

S(q) =
1

N

∑
ij

exp[−iq · (Ri − Rj)]

Krüger (CU) Density fluctuations Chiba 2020.10.19 3 / 51



Stucture factor and pair distribution function

structure factor of liquid Ar

g(r)− 1 =
1

8π3ρ0

∫
[S(q)− 1]e−iq.rdq

pair distribution function

Krüger (CU) Density fluctuations Chiba 2020.10.19 4 / 51



Meaning of pair distribution function

dN = g(r)ρ 4πr2dr

= average number of particles at
distance (r ,r+dr) from chosen
one. (∼ conditional probability)

If particle positions are
uncorrelated (ideal gas)
→ g(r) = 1

g < 1 depletion
g > 1 accumulation

Krüger (CU) Density fluctuations Chiba 2020.10.19 5 / 51



Crystals?

powder diffraction → S(q)

Aluminum (neutron diffraction) corresponding PDF

[B. H. Toby and T. Egami, Acta Cryst. A48 (1992) 336.]

Krüger (CU) Density fluctuations Chiba 2020.10.19 6 / 51



Particle number fluctuations in fluids

fluctuations ∼ 2nd derivatives of thermodynamic potentials

canonical ensemble (T,V,N)

CV =

(
∂〈E 〉
∂T

)
V ,N

=
〈E 2〉 − 〈E 〉2

kBT 2

grand-canonical ensemble (T,V,µ) particle number fluctuations

〈N2〉 − 〈N〉2

〈N〉
=

kBT

〈N〉

(
∂〈N〉
∂µ

)
T ,V

≡ 1

Γ

Γ = “thermodynamical correction factor”

Krüger (CU) Density fluctuations Chiba 2020.10.19 7 / 51



Compressibility equation

dG = −SdT − PdV − Ndµ

(
∂P

∂µ

)
T

=

(
∂N

∂V

)
T

= ρ

1

〈N〉

(
∂〈N〉
∂µ

)
T ,V

=
1

ρ

(
∂ρ

∂µ

)
T

=
1

ρ

(
∂ρ

∂P

)
T

(
∂P

∂µ

)
T

=

(
∂ρ

∂P

)
T

1

Γ
=
〈N2〉 − 〈N〉2

〈N〉
=

kBT

〈N〉

(
∂〈N〉
∂µ

)
T ,V

= kBT

(
∂ρ

∂P

)
T

isothermal compressibility

− 1

〈V 〉

(
∂〈V 〉
∂P

)
T ,N

=
1

ρ

(
∂ρ

∂P

)
T

Krüger (CU) Density fluctuations Chiba 2020.10.19 8 / 51



Kirkwood Buff theory: thermodynamics from structure

[J. Kirkwood and F. P. Buff, J.Chem.Phys. 19, 774 (1952)]

〈N2〉 − 〈N〉2

〈N〉
= 1 + ρG

G =

∫ ∞
0

[g(r)− 1] 4πr2dr

G =“Kirkwood-Buff integral”
g(r) = pair distribution function

g(r) from FT of structure factor
or molecular simulations

A. Ben-Naim

Molecular Theory of Solutions

g(r)

G (r)

Krüger (CU) Density fluctuations Chiba 2020.10.19 10 / 51



Relation to fluctuations

Fluctuations in V Particle excess in V

G (V ) ≡ 1
V

∫
V dr1

∫
V dr2h(|r1 − r2|) 6=

∫
V h(r)dr ≡ G0(V )

1

V

∫
V
dr2

∫
V−r2

drh(r) 6=
∫
V
dr h(r)

Krüger (CU) Density fluctuations Chiba 2020.10.19 17 / 51



Model pair distribution function

h(r) =

{
1.5
r/σ exp

(
− r/σ−1

χ

)
cos [2π(r/σ − 1.05)] , r ≥ 0.95σ,

−1, r < 0.95σ.

χ = 2 h(r) cut-off extact finite V extrapolated

Krüger (CU) Density fluctuations Chiba 2020.10.19 23 / 51



Molecular dynamics simulations

Simple model for liquid Argon. 10000 atoms, Lennard-Jones potential.

Density ρ/σ3 = 0.551. Temperature kBT/ε = 1.40.

Krüger (CU) Density fluctuations Chiba 2020.10.19 24 / 51



  

P. Krüger

https://arxiv.org/abs/2101.03515

Validity of compressibility equation and Kirkwood-Buff theory 
in crystalline matter

Volume integrals over the radial pair-distribution function, so-called Kirkwood-Buff integrals (KBI) 
play a central role in the theory of solutions, by linking structural with thermodynamic information. 
The simplest example is the compressibility equation, a fundamental relation in statistical mechanics 
of fluids. Until now, KBI theory could not be applied to crystals, because the integrals strongly 
diverge when computed in the standard way. We solve the divergence problem and generalize KBI 
theory to crystalline matter by using the recently proposed finite-volume theory. For crystals with 
harmonic interaction, we derive an analytic expression for the peak shape of the pair-distribution 
function at finite temperature. From this we demonstrate that the compressibility equation holds 
exactly in harmonic crystals.

Extension of Kirkwood-Buff theory to solids and its application 
to the compressibility of fcc argon
Masafumi Miyaji, Bastien Radola, Jean-Marc Simon, Peter Krüger, 

J. Chem. Phys. (2021) accepted



  

fcc crystal 
at T=0

Standard theory:
integral strongly 
diverges

our theory:
integral converges 
to exact limit (0)



  

Finite temperature

Harmonic crystal
(analytic theory)

Solid argon → 
anharmonic effects. 
molecular simulation



  

Integral converges to exact 
limit for all T → exact 
(const) compressibility

Harmonic crystal

Convergence, compressibility 

Solid argon

Integral converges (after many 
tricks)
Compressibility has correct 
temperature dependence,
but large systematic error 
(scaling factor), can be fixed.
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